TMS470M
ARM® Cortex™-M3 based
Hercules™ Microcontrollers

1 Day Workshop
TMS470M 1 Day Workshop Agenda

- Introduction and Roadmap
- Development Tools: Hardware kits, Software tools
- Safety Overview and Modules
 - **Lab 1: TMS470M Safety MCU Demos**
- TMS470M Architecture: Memory Map, Clocking, Exceptions
- Embedded Flash Memory tools: nowECC, nowFlash, Application Programmer Interface (API)
- Real Time Interrupt (RTI)
- Vectored Interrupt Manager (M3VIM)
- General-purpose I/O (GIO)
- Programmable Timer Unit (HET)
 - **Lab 2: Using HET as GIO**
- Multi-Buffered Serial Peripheral Interface (MibSPI)
- Controller Area Network (DCAN)
- Local Interconnect Network (LIN) / Serial Communication Interface (SCI)
 - **Lab 3: PC to SCI Communication**
- Multi-buffered Analog-to-Digital Converter (MibADC)
- Support Structure: Web, Forum, WIKI
ARM Cortex Advanced Processors

Architectural innovation, compatibility across diverse application spectrum

- **ARM Cortex-A family:**
 - Applications processors for feature-rich OS and 3rd party applications

- **ARM Cortex-R family:**
 - Embedded processors for real-time signal processing, control applications

- **ARM Cortex-M family:**
 - Microcontroller-oriented processors for MCU, ASSP, and SoC applications
• **ARM® Cortex™**

• **Embedded Processing Cores at Texas Instruments**

• High-performance, low power core
• Multimedia, DSP acceleration capabilities
• Mobile computing capabilities
• Internet-enabled

• **ARM Cortex-A family:**
 - Interactive media and graphics experience
 - Neon optimization
 - Full-featured OS support (Linux, WinCE, etc…)

• **Hercules**
 - Real-time control
 - High-reliability
 - Built-in redundancies
 - Safety-focused
 - Commitment to enhancing performance and increasing memory footprint
 - System coherency

• **ARM Processor Family**

• **Sitara**
 - High-performance, low power core
 - Multimedia, DSP acceleration capabilities
 - Mobile computing capabilities
 - Internet-enabled

• **ARM Cortex-R family**

• **AMxx**

• **ARM Cortex-M family**

• **Stellaris®**
 - Active/sleep power efficiency
 - Efficient gate counts for better price/performance
 - Optimized price/performance
 - Interactive media and graphics experience
 - Neon optimization
 - Full-featured OS support (Linux, WinCE, etc…)

• **TMS470M for Transportation**

• **TMS570**
 - Hercules
 - RM4

• **Hercules**
 - TMS570
 - RM4

• **TMS470M for Transportation**

• **TMS470M for Transportation**

• **Proven processors cores with ongoing architectural innovation that simplifies the ease of use**
What is TMS470M?
Value Line of Safety MCUs

What’s new

- Efficient 16/32-bit ARM® Cortex™-M3
- Developed specifically for safety critical systems
- Configurations from 256KB to 640KB embedded flash with ECC
- Support for fast engineering ramp and time to market.

Ideal for applications requiring

- Performance in harsh environments
- Cost sensitive safety applications
- Safety oriented and high reliability
- And…
 - Scalability
 - System cost constraints
 - Software re-use and portability

TMS470M – A good fit for Transportation & Safety

- Automotive Safety Systems
- Offroad Vehicles
- Railway
- Hybrid & Electric Vehicles
- Industrial
- Medical
- Avionics

What's new

- Developed specifically for safety critical systems
- Configurations from 256KB to 640KB embedded flash with ECC
- Support for fast engineering ramp and time to market.

Ideal for applications requiring

- Performance in harsh environments
- Cost sensitive safety applications
- Safety oriented and high reliability
- And…
 - Scalability
 - System cost constraints
 - Software re-use and portability

TMS470M – A good fit for Transportation & Safety

- Automotive Safety Systems
- Offroad Vehicles
- Railway
- Hybrid & Electric Vehicles
- Industrial
- Medical
- Avionics

Texas Instruments
Cortex-M3 – The New MCU Standard

• An ARM7TDMI-S for the 21st century
 – For extreme cost and power-sensitive complex applications
 – Comparable or better \(F_{\text{MAX}} \) and gate count with r2p0 min config
 – 30% more DMIPS, 28% more geomean EEMBC
 – 85% more DMIPS per mW

• State-of-the-art functionality
 – Code **everything** in C
 – Thumb-2 ISA \(\rightarrow \) 6X code density, 10X perf. v 8051
 – Integrated Nested Vectored Interrupt Controller (NVIC) with lowest interrupt latency of any ARM
 – Configurable/optimal memory protection, debug, trace
 – uA device stand-by enabled with integrated sleep modes, ULL libraries, state retention

• Broad adoption within microcontroller and embedded SoC markets
High Performance ARM® Cortex™-M3 CPU

- ARM v7M Cortex® ISA
 Upward compatible to Cortex-R4F/TMS570

- Superior Performance / Code Density
 Thumb-2 instructions

- 3 Stage Pipeline Delivers 1.25 DMIPS/MHz

- Single Cycle Hardware Multiplier and Hardware Divider

- Over 96 DMIPS of Performance
- Superior Code Density
- ARM-based: Broad Industry Adoption

High performance 80 MHz CPU

Integrated Nested Vectored Interrupt Controller (NVIC)

8 Region Memory Protection (MPU)
TMS470M Safety Features

- Developed for safety applications
- Built in self test for CPU and RAMs
- ECC for Flash and RAM

CPU Self Test Controller requires little S/W overhead

Error Signaling Module

Parity on all Peripheral RAMS, ECC protected
Interrupt Vector Table in Flash/RAM

Memory BIST on all RAMS allows fast memory test at startup

On-Chip Clock Monitoring

CRC, Calibration, ADC Self Test, …
Hercules™ Safety MCU Roadmap

Industrial & Medical
- TMS570LS202S
 - 2*R4F LS
 - 2MB, 160kB
 - 160MHz
- TMS570LS102S
 - 1MB, 160kB
- TMS570LS31x
 - 2*R4F LS
 - 3MB, 256kB
 - 180MHz
- TMS570LS21x
 - 2MB, 192kB
- TMS470MF031S
 - 320kB, 16kB
- TMS470MF042S
 - 448kB, 24kB
- TMS470MF066S
 - ARM® Cortex™-M3
 - 640kB, 48kB
 - 80MHz
- TMS570LS31x
 - 2*R4F LS
 - 3MB, 256kB
 - 180MHz

Production
- Sampling
- Development

Lockstep CPUs
- IEC 61508 SIL3
- ISO 26262 support planned

Stability Control
- Industrial Automation
- Safe Connectivity
- Medical

Value
- TMS570LS202S
 - 2*R4F LS
 - 2MB, 160kB
 - 160MHz
- TMS570LS102S
 - 1MB, 160kB
- TMS570LS31x
 - 2*R4F LS
 - 3MB, 256kB
 - 180MHz
- TMS570LS21x
 - 2MB, 192kB
- TMS470MF031S
 - 320kB, 16kB
- TMS470MF042S
 - 448kB, 24kB

Production 4Q 2012
- More memory options
- New peripherals

Production Feb 2012
- More memory options
- New peripherals

Smaller memory options
- New peripherals
- Lower cost

ABS
- Power Steering
- Passive Safety

Power Steering
- Vehicle Electrification

Industrial & Medical
- TMS570LS202S
 - 2*R4F LS
 - 2MB, 160kB
 - 160MHz
- TMS570LS102S
 - 1MB, 160kB
- TMS570LS31x
 - 2*R4F LS
 - 3MB, 256kB
 - 180MHz
- TMS570LS21x
 - 2MB, 192kB
- TMS470MF031S
 - 320kB, 16kB
- TMS470MF042S
 - 448kB, 24kB

Production 4Q 2012
- More memory options
- New peripherals
TMS470M Series Configurations

Value Line of Safety MCUs:
- Aerospace
- Railway
- Automotive
- Industrial
- Medical

TMS470MF03107
- ARM® Cortex™-M3
- 320kB, 16kB
- 80MHz

TMS470MF04207
- ARM® Cortex™-M3
- 448kB, 24kB
- 80MHz

TMS470MF06607
- ARM® Cortex™-M3
- 640kB, 64kB
- 80MHz

MEMORy

<table>
<thead>
<tr>
<th>Device</th>
<th>Speed</th>
<th>Flash</th>
<th>EEPROM Or Flash*</th>
<th>RAM</th>
<th>CAN</th>
<th>MibSPI/CS</th>
<th>UART (LIN)</th>
<th>HET (ch)</th>
<th>MibADC 10-bit (ch)</th>
<th>GIO</th>
<th>Voltage</th>
<th>Package</th>
<th>Temp</th>
<th>Q100</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS470MF03107</td>
<td>80MHz</td>
<td>256kB</td>
<td>64kB</td>
<td>16kB</td>
<td>2</td>
<td>2 (12)</td>
<td>2(2)</td>
<td>16</td>
<td>16</td>
<td>4</td>
<td>3.3V</td>
<td>100QFP</td>
<td>-40..+125C</td>
<td>Yes</td>
</tr>
<tr>
<td>TMS470MF04207</td>
<td>80MHz</td>
<td>384kB</td>
<td>64kB</td>
<td>24kB</td>
<td>2</td>
<td>2 (12)</td>
<td>2(2)</td>
<td>16</td>
<td>16</td>
<td>4</td>
<td>3.3V</td>
<td>100QFP</td>
<td>-40..+125C</td>
<td>Yes</td>
</tr>
<tr>
<td>TMS470MF06607</td>
<td>80MHz</td>
<td>512kB</td>
<td>128kB</td>
<td>64kB</td>
<td>2</td>
<td>2 (12)</td>
<td>2(2)</td>
<td>16</td>
<td>16</td>
<td>4</td>
<td>3.3V</td>
<td>100QFP</td>
<td>-40..+125C</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Can be used as program flash or as emulated EEPROM

SAMPLING NOW!
TMS470M Block Diagram
TI Automotive Qualified ARM Cortex-M3 MCU

Performance / Memory
- 80 MHz ARM Cortex-M3
- Up to 640KB Flash (128KB can be used as emulated EEPROM)
- Up to 64KB Data SRAM
- EEPROM Emulation Capability

Features
- **Safety**
 - CPU Self Test Controller
 - Flash & RAM w/ ECC
 - Memory Built-in Self Test
 - Cyclic redundancy checker module (CRC)
- **Reliability**
 - Low PPM Production Flow Support
 - Extended Temp and AEC-Q100 Qualification
- **On-chip VREG (only 3.3v required)**
- **Enhanced I/O Control**
 High End Timer Coprocessor (HET)
 - 16 I/O Channels
 - All pins can be used as PWM or Input Capture
 - Hardware Encoders & Time Stamping
 10-bit MibADC (16 channels)
 - Continuous Conversion Channels
 - Buffered FIFO
 - Self Test on ADC
- **Strong Communication Networks**
 - 2 x CAN Interfaces
 - 2 Multi-Buffered SPI
 - 2 x LIN / UART (SCI)

Targeted Applications
- General Safety Applications
- Automotive/Aerospace
- Industrial/Medical

100pin QFP - 14x14mm
-40 to 125°C Temperature Range
TMS470M Development Tools
TMS470M Software Tools

Code Composer Studio IDE

Program & debug code using Code Composer Studio:
- Full Featured Debugger
- Compiler
- Linker
- Integrated Flash Programming

GUI Demos & Code Examples

Safety MCU Demos:
- Safety Feature Highlight
- Ambient Light Demo
- Temperature Sensor Demo
- LED Light Show
- Source Code Viewable via CCS

GUI-based Code Generation Tools and Other SW Tools

HALCoGen
- User Input on High Abstraction Level
- Graphical-based code generation
- Easy configuration
- Quick start for new projects

HET IDE
- Graphical Programming Environment
- Output Simulation Tool
- Generates CCS-ready software modules
- Includes functional examples from TI

FMzPLL Calculators
Easily configure the FMzPLL in the TMS470M Phase Lock Loop modules.

now ECC™ ECC Generation Tool
Command line program for generating Error Correction Code for TMS470M devices. Can be used in conjunction with CCSv4

now Flash™ Flash Programming Tool
GUI and command line programmer for loading code into TMS470M devices without an IDE.
HALCoGen: Hardware Abstraction Layer Code Generator

Features

- **User Input on High Abstraction Level**
 - Graphical-based code generation
 - Easy configuration
 - Quick start for new projects

- **Generates C Source Code**
 - ANSI Conforming
 - Clear, structured, coding style
 - Customizable code for user maintenance

- **Supported Peripherals**
 - System Module
 - RTI
 - GIO
 - SCI/LIN
 - CAN
 - SPI
 - ADC
 - Timer Co-processor (HET)

- **Interactive Help System**
 - Describes tool features and functions
 - Provides detailed dependency graphs
 - Provides useful example code
 - Tool tip help available
HALCoGen GUI Overview

- Menus and Icons
- Module Selection/Configuration
- Help
- Device Block Diagram
- Device/Output File Explorer
- Output/Status
Code Composer Studio v4.x

- Based on Eclipse industry standard for embedded debug tools
 - Modern window environment
 - Advanced source code editor
 - Scalable multi-core/processor environment
 - Program and Debug Application via JTAG
 - Test Automation via Scripting

- TMS470M Debug Features
 - 6 Hardware Breakpoints
 - Unlimited Software Breakpoints
 - Integrated Flash Programming
Code Composer Studio Components:

- Source Code View
- Target Connection
 - Source & object files
 - File dependencies
 - Compiler, assembler & linker build options
- Disassembly Window
- CPU Window
- Memory Window
- Watch Window
- Menus and Icons
- Help

![Code Composer Studio v4](image-url)
HET IDE (Timer Co-Processor Development Tool)

HET Device Configuration
- HET/NHET/N2HET
- Clock configuration
- Number and direction of pins
- XOR, AND and SHARE configuration on pins

HET Program Development
- Library with common predefined algorithms
- Insert functionality for algorithms and instructions
- *.c and *.h file creation for given *.het file

HET Program Simulation
- View resulting signal waveforms (WaveViewer, WaveFormer Pro)
- Various debugging options
- Memory and register windows
- Input stimuli (stimulus creator or VCD files)
The HET IDE works in conjunction with SynaptiCAD’s WaveFormer Pro (license necessary or 90-day trial) or WaveViewer (free). Both are installed with HET IDE and can be used to watch and check HET signals.
HET IDE – User Interface

HET IDE Program Development View

- Menu
- Debug Icons
- HET Program Code Window
- Device Configuration Window
- Project Window
- Console Output Window
- HET/NHET Register Window
External Tools:

- **IDE’s**
 - Lauterbach, iSystems, CCS
- **Compiler**
 - ARM, CCS
- **Emulator**
 - Spectrum Digital, Lauterbach, iSystems, Blackhawk, Signum Systems, XDS100, XDS560 ...
- **Operating System**
 - ETAS
- **CAN**
 - Vector
- **Trace / Calibration**
 - Lauterbach, iSystems
- **Production Flash Programming**
 - BP Microsystems, Data-IO
TMS470M Evaluation and Development Kit Overview

TMDX470MF066USB ($79) – Low Cost TMS470M Evaluation Kit
- USB Powered
- On Board USB XDS100v2 JTAG Debug
- On Board SCI to PC Serial Communication
- Access to Select Signal Pin Test Points
- CAN transceiver
- LEDs, Temp Sensor, Light Sensor
- QFP Packaged MCU

TMDX470MF066HDK ($179) - Full Featured TMS470M Development Kit
- USB Powered
- On Board USB XDS100v2 JTAG Debug
- On Board SCI to PC Serial Communication
- External high speed emulation via JTAG
- CAN Transceivers
- LEDs, Temp Sensor, Light Sensor
- Access to all peripheral pins
- Communications Expansion Board Compatible
- QFP Packaged MCU

Software Included in Each Kit:
- CCStudio v4.x IDE: C/C++ Compiler/Linker/Debugger
- HALCoGen Peripheral Driver Generation Tool
- CCS and nowFlash™ Flash Programming Tools
- HET GUI/Simulator/Assembler
- Demo Project/Code Examples
TI Suggested ABS System

- **Power Management Module**
 - Supervisor
 - Buck/LDO

- **ABS IC**
 - TPIC7218

- **ABS**
 - MCU
 - TMS470M/570

- **CAN Bus**
 - Transceiver

- **Wheel**
 - Speed
 - Sensor x4

- **Chassis**
 - CAN

- **Diagnostic Systems**
 - ISO K-Line

- **Charge Pump**
 - Monitor

- **Watchdog**
 - PWM x4

- **Wheel Speed**
 - Sensor
 - Interface

- **K-Line**

- **Main Relay Driver**

- **LS Switch Driver**
 - x4

- **PWM**

- **Lamp Driver**
 - x2

- **Battery**

- **Warning Lamp**

- **M**

- **Solenoid**

- **Diagnostic Systems**
 - ISO K-Line

- **Charge Pump**

- **Wake up**

- **Pump Motor Driver**

- **Main Relay Driver**

- **LS Switch Driver**

- **PWM**

- **Lamp Driver**

- **Buck/LDO**

- **Supervisor**

- **Solenoid**

- **Supervisor**

- **Charge Pump**

- **Watchdog**

- **SPI**

- **K-Line**

- **Lamp Driver**

- **Buck/LDO**

- **Supervisor**

- **Charge Pump**

- **Watchdog**

- **SPI**