eZ430-Chronos Wireless Watch Development Tool: Teardown & Getting Started

Adrian Valenzuela
April 28, 2010

www.ti.com/chronoswiki
eZ430-Chronos for wireless networking applications

Complete hardware, software and support community

Simplify & inspire development with world’s first customizable tool within an intelligent sports watch

Unparalleled system integration and ultra-low power

Easily enable wireless connectivity, longer battery life, improved ergonomics

Low cost development kit at $49

Increase accessibility and reduce development cost
Chronos | Advanced Integration

- CC430F6137 MCU
- 3-Axis VTI Accelerometer
- <1GHz RF
 - 433, 868 & 915 MHz
- VTI Pressure & Altitude Sensor
- Temperature Sensor
- Voltage & Battery Sensor
- CR2032 Battery
- 2-Wire JTAG Access
- 96 segment LCD
- Buzzer
- eZ430 Programmer
- RF Access Point
- Chronos Disassembly Tool
Chronos | Teardown
CC430 | RF + Ultra-Low Power MCU

MSP430™ Microcontroller
- Industry’s lowest power MCU
- 16-bit RISC architecture
- 20 MHz processor
- High-performance analog
- Sensor interface

CC1101 <1GHz RF Transceiver
- High sensitivity
- Low current consumption
- Excellent blocking performance
- Flexible data rate & modulation format

Intelligent Peripherals
- 100 nA comparator
- 8ch 12-bit ADC offering 200-ksp
- 96 segment LCD controller
- 128-bit AES security encryption/decryption coprocessor

64QFN Pin Package
- 9.1 mm x 9.1 mm area
Chronos | The Software

• Free development software
 – Code Composer Studio
 – IAR Embedded Workbench
 – MSPGCC*

• Production-ready, open-source projects

• RF stacks available
 – SimpliciTI
 – BlueRobin
 – W-Mbus
 – 6LoWPAN
 – More coming…

• User generated apps and support on www.ti.com/chronoswiki
SimpliciTI

- TI proprietary low-power RF network protocol
- Low Cost:
 - < 8K FLASH
 - <1K RAM
- Flexible:
 - simple star w/ extendor
 - p2p communication
- Simple: Utilizes a very basic core API
- Low Power: Supports sleeping devices
BM Wireless’ BlueRobin Key Facts

• **BlueRobin™** targets at
 – body area networks
 – long range monitoring systems

• **BlueRobin** provides
 – ultra-low power operation in TX and RX mode
 – multi-user support with patented collision avoidance
 – bi-directional and long range communication
 – remote data storage with automatic data download
 – built-in data encryption

• **BlueRobin** offers flexibility through
 – hardware independent implementation
 – small memory footprint and low resource requirements
 – support of all ISM bands (433MHz to 2.4GHz)

• **BlueRobin** key apps
 – Heart Rate, Speed, Distance, Steps, GPS, Temperature,
 – Altitude, Rotations, Weight, Blood Pressure, Blood Glucose
Chronos | Projects

- Watch functions: time, date, alarm, stopwatch
- Fitness function: running speed, distance, heart rate, calories burned
- Sensor data logging w/ wireless PC download
- PowerPoint Control
- Media Remote
- Motion-based mouse/PC game control
- Wireless App Updating
- Wireless door lock
- Virtual Theremin
- Robotics control

More apps to come…
www.ti.com/chronoswiki
Endless possibilities | Chronos serves as a central hub for nearby wireless sensors

- Control ceiling fan
- Raise & lower blinds
- Adjust thermostat
- Display GPS data
- Adjust entertainment system settings
- Pair with pedometer
- Pair with heart rate monitor
- Map Chronos buttons for PC Automation, motion-based control and more
Chronos | Frequency Differences

• Available in 3 different frequencies
 – 433 MHz : Japan, India, WW
 – 868 MHz : Europe
 – 915 MHz : N. & S. America

• 868 & 915
 – Use identical watch hardware
 – Frequency is software selectable
 – 868 MHz RF Access Point has extra 0Ω R

• 433 MHz
 – Still in R&D
 – Available in June (estimated)
 – RF Range predicted to be worse than 868/915
Chronos | RF Access Point

• Based on CC1111 w/ integrated USB + <1GHz RF
• “Fixed function” to communicate with Chronos & PC
• Can be manually reprogrammed with CC Debugger
• Supports wireless updating of Chronos firmware via RF BSL
 – RF BSL not included on first production batch

Header to JTAG signals has to be manually added
RF BSL | Wireless Updating

- Wireless update of watch firmware
- Small RF Stack resides in BSL memory
- Application must include function to invoke BSL

Pros:
- ~10x faster than downloading code via SBW
- No need to open enclosure

Cons:
- No debug capability
- Power hog
- Not supported out-of-the-box on early units (before 4/2010)
Chronos | Data Logger

- Chronos can be used as a data logger for:
 - Heart rate
 - Temperature
 - Altitude
- User definable intervals
 - 1 to 255 seconds
- 8kB of Flash memory reserved
- The stored data can be transferred to a PC
PC/Chronos Communication

- RF Access Point open Virtual COM Port over USB
 - bps 115200
 - Data bits 8
 - Parity None
 - Stop Bits 1
 - Flow Control None

- Control Center automatically
 - Opens COM port
 - Transfers data
 - Decodes packets
 - Displays info

- API available for manual data transfer
- Scripts available for:
 - Python
 - Processing
 - Ruby
 - .net

- All community developed, supported
Chronos | Extra Hardware

- Heart Rate Monitors
 - BM-CS5 (800m)
 - BM-CS5SR (10m): 49€

- Bike Sensors
 - Speed and distance (according to BMi Q4 2010)

- Compatible RF Development Boards
 - AMB8423
 - EM430F6137RF900
 - CC1101EMK433
 - CC1111EMK868-915
Getting Started: What you need

Hardware:
1. eZ430-Chronos
2. Computer: Windows / Linux

Software:
1. eZ430-Chronos Software Package: [Windows (SLAC341), Linux (SLAC388)]
2. IDE: IAR or CCS
3. Firmware Update tool (adds rfBSL)

Documentation
1. eZ430-Chronos User Guide (SLAU292): Technical details and instructions for Chronos
2. CC430 User Guide: Technical user manual for CC430
3. CC430F613x Datasheet: Electrical specs for CC430F613x

[www.ti.com/chronoswiki]
Chronos Software Package

- All files copied to C:\Program Files\Texas Instruments\eZ430-Chronos
- What’s included:
 - Control Center
 - Control Center GUI binary
 - Data logger GUI binary
 - GUI source code
 - Documentation
 - Chronos User Guide
 - Schematics, Layout (Gerbers) & BOM
 - RF Access Point
 - eZ430 Debug Interface
 - Watch
 - RF Access Point Driver
 - Binary images (Recovery)
 - Sports watch/Chronos
 - Datalogger app
 - rfBSL
 - RF Access Point
 - Software projects
 - Sports watch (CCS/IAR)
 - Datalogger (CCS/IAR)
 - RF Access Point (IAR)
Working with the Chronos Project (CCS)

• Open CCS
 – Pick any workspace
 – Close welcome screen

• Import Project
 – Project > Import existing…
 – Browse to C:\Program Files\Texas Instruments\eZ430-Chronos\Software Projects
 – Select ‘Copy Projects into workspace’

• Select ‘Active Project’
 – Right Click on project name

• Select ‘Active Build’
 – Select correct frequency & IDE version (core vs. full)

• Debug
Adding RFBSL to RF Access Point

- Hardware You’ll need
 - RF Access Point
 - CC Debugger

- Add connector to RF AP

- Run “Smart RF Flash Programmer”

- Load RF Access Point Recovery image

- Erase, Program, & Verify
Adding RF BSL to Chronos Watch

• RF BSL includes a small RF protocol stack with error recovery
• Resides within reserved BSL memory
 – Accessing via IAR/CCS is tricky
• Easiest update method
 – Use Firmware Update Tool
 – Select correct script for watch frequency
 – Automatically updates BSL + User Application
• User App needs to be modified to invoke BSL from menus
Thank you.

Enjoy the Chronos.