Introduction to Hercules™ ARM® Cortex™-R4F MCUs
Make the world a safer place with Hercules™ MCUs

Electronics are proliferating in safety-critical applications

- EN 50128 (railway)
- DO-254 DO-178B (aerospace)
- IEC 50156 (furnaces)
- IEC 60880 (nuclear power stations)
- ISO 26262 (automotive)
- IEC 60601 (medical equipment)
- IEC 61511 (process industry)
- IEC 61508 (safety)
- ISO 13849 (machinery)
- ISO 13849 (safety)
- DO-254 DO-178B (aerospace)
- IEC 50156 (furnaces)
- IEC 60880 (nuclear power stations)
- ISO 26262 (automotive)
- IEC 60601 (medical equipment)
- IEC 61511 (process industry)
- IEC 61508 (safety)
- ISO 13849 (machinery)
- Protection against random and systematic failures
- Headroom for application differentiation
- Simplified development and system certification

Hercules MCUs provide developers of safety-critical applications:
TI Hercules™ MCU Platform
ARM® Cortex Based Microcontrollers

Hercules Platform

RM4x

High Performance Industrial and Medical Safety MCUs
- Industrial Applications
- Medical Applications
- -40 to 105°C Operation
- Ethernet, USB Connectivity
- Developed to Safety Standards
 - IEC 61508 SIL-3
 - Cortex-R – over 350 DMIPS

TMS570

High Performance Transportation and Safety MCUs
- Transportation Applications
- Automotive Q100 Qualification
- -40 to 125°C Operation
- FlexRay, CAN Connectivity
- Developed to Safety Standards
 - ISO 26262 ASIL-D
 - IEC 61508 SIL-3
 - Cortex-R – over 280 DMIPs

TMS470M

Value Line Transportation and Safety MCUs
- Transportation Applications
- Automotive Q100 Qualification
- -40 to 125°C Operation
- LIN, CAN Connectivity
- Supports Safety for
 - IEC 61508 Systems
 - Cortex-M – to 100 DMIPS

Texas Instruments
Hercules™ RM48 Safety MCUs
Highest performance ARM® Microcontrollers

Features

- ARM® Cortex™-R4F floating-point CPU up to 220MHz (>350 DMIPS)
- Developed specifically for safety critical industrial and medical systems
- Scalable embedded Flash memory up to 3MB
- CAN, Ethernet, USB Host/Device Communication Interfaces
- -40°C to 105°C Operation

Ideal for applications requiring

- High performance real time control
- Protection against random and systematic failures
- Safety certification and high reliability
- And…
 - Scalability
 - System cost constraints
 - Software re-use and portability

RM48 – A safe fit for Industrial and Medical
Hercules Cortex-R4F MCU safety features

- Dual Core Lockstep - Cycle by Cycle CPU Fail Safe Detection
- Parity on all Peripheral, DMA and Interrupt controller RAMS
- Parity or CRC in Serial and Network Communication Peripherals
- Logical / physical design optimized to reduce probability of common cause failure
- CPU Self Test Controller requires little S/W overhead
- Memory BIST on all RAMS allows fast memory test at startup
- On-Chip Clock and Voltage Monitoring
- Error Signaling Module w/ External Error Pin
- IO Loop Back, ADC Self Test, …
- Dual ADC Cores with shared channels

• Safe Island Hardware diagnostics (RED)
• Blended HW diagnostics (BLUE)
• Non Safety Critical Functions (BLACK)
1001D Dual Core Safety Concept

• Unique design to reduce common cause failures (βIC)
 – Second CPU mirrored and rotated
 – Minimum distance 100μm between CPUs
 – Cycle delayed lockstep
 – Guard ring per CPU
 – Duplicated clock tree per CPU

• CPU Compare Module (CCM)
 – Self-test capability
 – Self-test error injection/error forcing
 – Output error injection
Advantages of lockstep CPUs vs. software and multi-core based solutions

- **Faster fault detection.** Enables safety in systems with tight control loop timing.
- **Better fault coverage.** Hard, transient, and AC fault types can be detected.
- **Little to no performance impact.** Full CPU performance available for application tasks rather than CPU diagnostics.
- **Minimal memory impact.** Flash and SRAM used for application rather than CPU diagnostics.
- **Easy integration.** Improve time to market without need to integrate complex software.
- **Proven, easy to justify diagnostic coverage.** Spend less time proving your CPU safety solution to auditors leaving more time to develop your application.
CPU Self Test Controller (STC/LBIST)

- Provides High Diagnostic Coverage
- Significantly Lowers S/W and Runtime Overhead
- No SW BIST (Built In Self Test) Code overhead in Flash
- Simple to configure and start BIST via register
Programmable Memory BIST (PBIST)

- All on-chip RAMS can be tested
- Simple register setup and configuration
- Typically run at startup, but can be executed during the application
- Multiple Memory Test Algorithms
- Detects multiple failure modes
- Provides a mechanism to determine if runtime faults were caused by hard or soft error. This capability can be used to improve availability through inline recovery from soft error.
Hardware BIST Advantages

- **Advantages of Hardware BIST over software test**
 - **Faster test execution.** SW tests require 10x-100x runtime for equivalent test coverage.
 - **Better fault coverage.** Addresses multiple fault models and achieves higher coverage possible than with SW only solutions.
 - **Minimal memory impact.** Leaves your flash and SRAM for application usage rather than memory and CPU tests.
 - **Easy integration.** Improve time to market without need to integrate complex software.
 - **Proven, easy to justify diagnostic coverage.** Spend more time on your application and less time proving your CPU safety solution to auditors
Flash / RAM ECC Protection

- ECC evaluated in the Cortex R4F CPU
 - Single Bit Error Correction and Double Bit Error Detection (SECDED)
 - ECC evaluated in parallel to processing data/instructions
 - No latency or performance impact
 - Protects Busses from CPU to Flash and RAM
Safety Aspects of Network Interfaces

- Networked peripherals (Ethernet, FlexRay, DCAN, and SCI/LIN) are considered grey-channel / black-channel communications

- In such communications application level protocols (time redundancy, CRC in data packet, etc.) are necessary

- When such assumption is made, the Dangerous Undetected Failure from the network is effectively not measurable (<0.001 Failure In Time (FIT))
Error Signaling Module (ESM)

- Errors for Group 1
- Errors for Group 2
- Errors for Group 3

INTEN, INTLVL, Low Level Interrupt Handling, High Level Interrupt Handling, Low Time Counter Preload, Low Time Counter, nERROR pin, To Interrupt Manager

Texas Instruments
ESM Features

• ESM functions
 – Up to 96 error channels, divided into 3 different groups
 • 32 channels with configurable output for interrupt and error behavior
 • 32 channels with predefined output for interrupt and error behavior
 • 32 channels with predefined output for error behavior
 – Error pin to signal severe device failure
 – Configurable timebase for error signal
 – Error forcing capability for self test

• ESM hardware
 – Indicates severe device failure at an external pin (nERROR)
 – Hardware assistance for prioritizing error sources
Clock Monitoring

- **External clock prescaler (ECLK)**
 - Allows external monitoring of CPU clock frequency
 - Configurable pin (GIO or ECLK)

- **Oscillator monitor**
 - Detects failure if oscillator frequency exceeds defined min/max thresholds
 - Selectable hardware response on oscillator fail
 - Reset device
 - Switch to internal ‘low power oscillator’ (LPO) clock source

- **FMPLL slip detector**
 - Indicates PLL slip if phase lock is lost
 - Selectable hardware response on PLL slip
 - Reset device
 - Switch to internal ‘low power oscillator’ (LPO) clock source
 - Switch to external oscillator clock source
Dual Clock Comparator (DCC)

- The DCC module is used to measure the frequency of a clock signal using a second clock signal as a reference.
 - Allows application to ensure that a fixed frequency ratio is maintained between two clock signals
 - Supports the definition of a programmable tolerance window in terms of number of reference clock cycles
 - Supports continuous monitoring without requiring application intervention
 - Alternatively can be used in a single-sequence mode for spot measurements
 - Flexible clock source selection for Counter 0 and Counter 1 resulting in several specific use cases
Digital Windowed Watch Dog (DWWD)

- The DWWD module will reset the MCU or generate a non-maskable interrupt to the CPU if the application fails to service the watchdog within the appropriate time window.
 - Optional safety diagnostic that can detect a runaway CPU
 - Includes a 25-bit down counter
 - Alerts the Error Signaling Module when a CPU interrupt is generated
 - Supports multiple service windows: 100%, 50%, 25%, 12.5%, 3.125%
 - Servicing requires a specific two part key sequence
 - Once enabled can only be disabled by a system or power on reset
Memory Protection Unit (MPU)

- A Dedicated Memory Protection Unit (MPU) is implemented for each bus master

- Bus masters include the CPU, DMA, HTU and the FTU

- A memory region is defined which allows read and write access for the bus master

- Access outside the defined region can be any of the mode

 - **Read Only**: Read access allowed for the memory accesses outside the region. Write accesses are blocked

 - **No Access**: Read and write access is blocked.

- In the event of a memory protection violation the Error Signaling Module (ESM) is notified
Voltage Monitor

• Supply Voltage Monitor (VMON)

 – Holds reset until core and I/O rails in expected range (removes power sequencing requirements)

 – Asserts reset if core or I/O supply exceeds defined min/max thresholds

 – Asserts reset when core supply is below specified min voltage and asynchronously sets all I/O pins to high impedance mode
Dual Analog to Digital Converters

• Dual12-bit ADC Cores:

 – Core 1 supports 24 analog inputs & Core 2 supports 16 analog inputs

 – Up to 16 analog channels can be shared between the 2 cores for safety critical conversions/comparison (1oo2 safety redundancy)

 – Internal ADC reference voltages can be used to check converter functionality.

 – Self Test Mode enables in application detection of opens/shorts on ADC inputs

 – ADC calibration logic can improve accuracy or be used to detect drift between multiple test results.
TMS570LS20216S Safety Documents

• Documents provided by TI under NDA to assist in the safety certification process:
 – IEC 61508 SIL3 Certificate from Exida
 – IEC 61508 Functional Safety Assessment Report from Exida
 – FMEDA: Failure Modes, Effects and Diagnostic Analysis
 – TMS570LS20216 Safety Manual
High Performance Cortex-R4F floating-point CPU

ARM® v7R Cortex™ ISA fully backward Compatible to ARM7/9/11
Up to 220 MHz CPU Clock Speed
Fast MULT, DIV, and SQRT enables model-based control; simplifies algorithm implementation
12 region memory protection

Lockstep CPUs: Single core programming model – second core checks the first.

Supports ARM, Thumb and Thumb-2 instructions
Single / double precision IEEE 754 floating-point
Floating point and integer instructions operate in parallel
Superscalar, SIMD, 8 stage pipeline delivers 1.6 DMIPS/MHz

ARM® Cortex™-R4F
220 MHz

• Over 350 DMIPS of performance
• High performance floating point
• ARM-based: broad industry adoption

Scalable ARM Based Solutions from TI: Stellaris, Concerto, Hercules & Sitara

Broad ARM IDE/Compiler Support: CCS, KIEL, IAR, etc…

Texas Instruments
RM48x Block Diagram

Dual Core Lockstep ARM Cortex-R4F w/ Floating Point

Performance / Memory
- Up to **220 MHz** ARM Cortex-R4 w/ Floating Point
- Up to 3MB Flash and 256KB Data SRAM
- 16 Channel DMA

Features

- **Safety**
 - Dual CPU’s in Lockstep
 - CPU Logic Built in Self Test (LBIST)
 - Flash & RAM w/ ECC
 - Memory Built-in Self Test (PBIST)
 - Cyclic redundancy checker module (CRC)
 - Peripheral RAMs protected by Parity

- **Communication Networks**
 - **10/100 EMAC**
 - **USB: Host and Device**
 - 3 CAN Interfaces
 - 3 Muti-Buffered SPIs + 2 Std. SPIs
 - 2 UARTs
 - 1 I2C

- **Enhanced I/O Control**
 - 2x High End Timer Coprocessor (NHET)
 - Up to 40 pins plus 6 monitor channels
 - All pins can be used as Hi-Res PWM or Input Capture
 - Dedicated DMA for HET

- 2 x12-bit Muti-Buffered ADC
 - 24 total input channels
 - Continuous Conversion Mode
 - Calibration and Self Test

16 Dedicated GIO pins
- All pins are External Interrupt Capable

Targeted Applications
- Industrial Safety and Control
- Critical Care Medical

Note: Above reflects max configuration of each module – some functions are multiplexed.
Hercules™ Development Kits

Evaluation
- TMDXRM48USB – RM48 USB Stick Kit
- TMDX570LS31USB – TMS570 USB Stick Kit
- TMDX470MF066USB – TMS470M USB Stick Kit
 - USB Powered
 - On Board USB XDS100v2 JTAG Debug
 - On Board SCI to PC Serial Communication
 - Access to Select Signal Pin Test Points
 - LEDs, Temp Sensor & Light Sensor
 - Accelerometer (TMS570 & RM)
 - CAN transceiver

Development
- TMDXRM48HDK – RM48 Development Kit
- TMDX570LS31HDK – TMS570 Development Kit
- TMDX470MF066HDK – TMS470M Development Kit
 - On Board USB XDS100v2 JTAG Debug
 - External high speed emulation via JTAG
 - TRACE pads for ETM/RTP/DMM
 - LEDs, Temp Sensor & Light Sensor
 - CAN Transceivers
 - RJ45 10/100 Ethernet Interface (TMS570 & RM)
 - USB-A Host Interface (RM)
 - USB-B Device Interface (RM)

$79

$199

Software Included in Each Kit:
- CCStudio v4.x IDE: C/C++ Compiler/Linker/Debugger
- HALCoGen Peripheral Driver Generation Tool
- CCS and nowFlash Flash Programming Tools
- HET GUI/Simulator/Assembler
- GUI Demo with Project/Code Examples
Hercules™ Software Tools

IDEs (compilers & debuggers)

Program/debug code using these IDEs:
- Code Composer Studio
- IAR Workbench
- KEIL µVision

RTOS Support

Real Time Operating System Support:
- SAFERTOS: High Integrity Systems
- µC/OS: Micrium
- ThreadX: Express Logic:
- AUTOSAR: Vector Microsar and EB tresos

GUI-based Code Generation Tools and Other SW Tools

Safety MCU Demos
- Safety Feature Highlight
- Ambient Light & Temperature Demo
- LED Light Show
- Maze Game
- Source Code Viewable via CCS

PLL Calculators
Easily configure the FMzPLL and FPLLs in the Hercules platform Phase Lock Loop modules.

HET IDE
- Graphical Programming Environment
- Output Simulation Tool
- Generates CCS-ready software modules
- Includes functional examples from TI

HALCoGen
- User Input on High Abstraction Level
- Graphical-based code generation
- Easy configuration
- Quick start for new projects
- Supports CCS, IAR & KEIL IDEs

now ECC ECC Generation Tool
Command line program for generating Error Correction Code for Hercules devices. Can be used in conjunction with CCSv4

now Flash Flash Programming Tool
GUI and command line programmer for loading code into Hercules devices without an IDE.
Hercules™ Support Structure

Hercules Web Page: www.ti.com/hercules
RM4 Web Page: www.ti.com/rm4
TMS570 Web Page: www.ti.com/tms570
TMS470M Web Page: www.ti.com/tms470m
 – Data Sheets
 – Application Notes
 – Software & Tools Downloads and Updates
 – Order Evaluation and Development Kits

Engineer 2 Engineer Support Forum:
www.ti.com/hercules-support
 – News and Announcements
 – Useful Links
 – Ask Technical Questions
 – Search for Technical Content

Hercules WIKIs:
RM4 WIKI: www.ti.com/hercules-rm4-wiki
TMS570 WIKI: www.ti.com/hercules-tms570-wiki
TMS470M WIKI: www.ti.com/hercules-tms470m-wiki
 – How to guides
 – Intro Videos
 – General Information
More Hercules™ Training

1 Day Training Class:
Hercules 1 Day Safety Seminar

- Introduction
- What is Functional Safety?
- Safety Standards Overview
- IEC 61508 Safety Standard
- ISO 26262 Safety Standard
- Random Fault Management
- Safety System Architectures
- Hercules Safety Concept
- Lab 1: Hercules Safety MCU Demos
- Hercules Architecture
- Development Tools: HW kits, SW tools
- Embedded Flash Memory tools
- Real Time Interrupt (RTI)
- Vectored Interrupt Manager (VIM)
- Direct Memory Access (DMA)
- General-purpose I/O (GIO) & NHET
- Lab 2: Using NHET as GIO
- Communication Interfaces: UART, LIN, CAN, FlexRay, Multi-Buffered Serial Peripheral Interface (MibSPI)
- Lab 3: PC to SCI Communication
- External Memory Interface (EMIF) / Parameter Overlay
- Multi-buffered Analog-to-Digital Converter (MibADC)
- Support Structure: Web, Forum, WIKI

Who should attend:
- Hardware and Software Developers
- Project Managers
- Safety Specialists
- Anyone interested in Hercules MCUs and functional safety

3 Day Training Class:
Safety Critical Design and Programming with ARM® Cortex™-R4F based Hercules MCUs

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome and Intro</td>
<td>Summary / Questions</td>
<td>Summary / Questions</td>
</tr>
<tr>
<td>Hercules Product Overview / MCU Roadmap</td>
<td>ARM® Cortex™ -R4F CPU Architecture Overview</td>
<td>Multi-Buffer Serial Peripheral Interface (SPI / MIBSPI-P)</td>
</tr>
<tr>
<td>Safety Standards and Hercules Safety Features</td>
<td>System Module Overview</td>
<td>DCAN</td>
</tr>
<tr>
<td>HALCoGen / Exercise</td>
<td>Device setup/startup, Real Time Interrupt Module, Vectored Interrupt Manager</td>
<td>FlexRay / Transfer Unit</td>
</tr>
<tr>
<td>Code Composer Studio / Demonstration / Exercise</td>
<td>CRC Controller, CPU Compare Module, Error Signaling Module</td>
<td>Multi-Buffer ADC (MIBADC)</td>
</tr>
<tr>
<td>Compiler / Exercise</td>
<td>General Purpose I/Os / Supply</td>
<td>External Memory Interface (EMIF) / Parameter Overlay Module (POM)</td>
</tr>
<tr>
<td>Flash Overview</td>
<td>Direct Memory Access Controller (DMA)</td>
<td>NHET (High End Timer) IDE</td>
</tr>
<tr>
<td>Flash Tools: nowFlash™, nowECC™, nowProfile™</td>
<td>Serial Communication Interface (SCI/UART/LIN)</td>
<td>NHET</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NHET Transfer Unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summary & Questions</td>
</tr>
</tbody>
</table>