
9/29/2020 IPC Install Guide QNX - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/IPC_Install_Guide_QNX 1/7

IPC Install Guide QNX

Introduction
Install
Build

products.mak
ipc-qnx.mak
ipc-bios.mak

Run
Configuring the BSP
Installing Tests in QNX

Installing remote core applications
IPC resource manager
Running Test Applications

Expected output
Running standalone examples
Advanced topics

Load and unload individual cores while IPC is running (IPC 3.23.01 and above)
Inspect the state of a slave core (IPC 3.23.01 and above)
Tracing

Host-side trace output
Trace from IPC user libraries (IPC 3.35 and above)
Trace from IPC resource manager (IPC 3.35 and above)
Slave-side trace output

Building the IPC resource manager in debug mode (IPC 3.35 and above)

See Also

Inter/Intra Processor Communication (IPC) is a product designed to enable communication between processors in a multi-processor environment. Features of IPC include message

passing, multi-processor gates, shared memory primitives, and more.

IPC is designed for use with processors running SYS/BIOS applications. This is typically an ARM or DSP. IPC includes support for High Level Operating Systems (HLOS) like Linux, as

well as the SYS/BIOS RTOS. The breadth of IPC features supported in an HLOS environment is reduced in an effort to simplify the product.

IPC is often distributed and installed within a larger SDK. In those cases, no installation is required.

Outside of an SDK, IPC can be downloaded here (http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ipc/index.html), and is released as a zip file. To install, simply

extract the file.

buildhost$ unzip ipc_<version>.zip

This will extract the IPC product in a directory with its product name and version information (e.g. c:/ti/ipc_<version>)

NOTE

This document assumes the IPC install path to be the user's home directory on a Linux host machine (/home/<user>) or the user's main drive on a Windows host machine
(C:\). The variable IPC_INSTALL_DIR will be used throughout the document. If IPC was installed at a different location, make appropriate changes to commands.
Some customers find value in archiving the released sources in a configuration management system. This can help in identifying any changes made to the original sources -
often useful when updating to newer releases.

The IPC product often comes with prebuilt SYS/BIOS-side libraries, so rebuilding them isn't necessary. The QNX-side libraries/binaries may also be provided prebuilt by SDK programs,

but the standalone IPC release does not currently pre-build them.

IPC provides GNU makefile(s) to rebuild all its libraries at the base of the product, details are below.

NOTE

GNU make version 3.81 or greater is required. The XDC tools (provided with most SDKs and CCS distributions) includes a pre-compiled version of
GNU make 3.81 in $(XDC_INSTALL_DIR)/gmake.

Contents

Introduction

Install

Build

products.mak

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ipc/index.html

9/29/2020 IPC Install Guide QNX - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/IPC_Install_Guide_QNX 2/7

IPC contains a products.mak file at the root of the product that specifies the necessary paths and options to build IPC for the various OS support.

Edit products.mak and set the following variables:

Variables used by both QNX and BIOS

PLATFORM - Device to build for

QNX started using this variable in IPC 3.20. Prior releases required setting "DEVICE" for QNX and "PLATFORM" for BIOS. The two variables were consolidated in IPC 3.20.
BIOS started leveraging this variable in IPC 3.10. Prior releases built BIOS-side executables for all supported platforms based on that targets/toolchains set above (which
can take a while!)

QNX

QNX_INSTALL_DIR - Path to your QNX installation directory.
DESTDIR - Path to which target binaries will be exported when running the 'make install' goal.
DEVICE - (only required for releases prior to IPC 3.20) Device to build for

SYS/BIOS

XDC_INSTALL_DIR - Path to TI's XDCTools installation
BIOS_INSTALL_DIR - Path to TI's SYS/BIOS installation
ti.targets.<device target and file format> - Path to TI toolchain for the device.

Set only the variables to the targets your device supports to minimize build time.
gnu.targets.arm.<device target and file format> - Path to GNU toolchain for the device.

Set only the variables to the targets your device supports to minimize build time.

NOTE

The versions used during validation can be found in the IPC Release Notes provided in the product.

The QNX-side build is performed using QNX makefiles. To build using the components paths set in the products.mak file, issue the following command:

<buildhost> make -f ipc-qnx.mak all

The SYS/BIOS-side IPC is built with a GNU makefile. After editing products.mak, issue the following command:

<buildhost> make -f ipc-bios.mak all

Based on the number of targets you're building for, this may take some time.

Note for Windows users: If you are building with a Windows host machine and it has the QNX tools installed, you will instead need to run the following in a separate command

prompt window (cmd.exe) to build the SYS/BIOS side outside of the QNX build environment:

<buildhost> set PATH=C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem
<buildhost> <XDC_INSTALL_DIR>\gmake -f ipc-bios.mak all

where <XDC_INSTALL_DIR> should be replaced with the installation directory of your XDC tools, same as the path you have used in products.mak.

The IPC product provides a way to install (copy) the necessary IPC executables and libraries onto the device's target file-system to simplify the execution of the applications. The details

can vary across OS's, so this description has been separated into OS-specific sections.

Some of the provided IPC tests that use a utility called SharedMemoryAllocator require a carveout to be created in the QNX-owned memory. To reserve this memory, you must make the

following change in the file <QNX BSP installation directory>\src\hardware\startup\boards\<board name>\build in the QNX BSP. E.g.

 startup-omap5432uevm -r 0xBA300000,0x5A00000 -vvvvv -P2 -W

Save the file, then rebuild the QNX OS image (ifs-*.bin) and replace your existing one with the new one.

To assemble the IPC resource manager, shared libraries and test executables into a directory structure suitable for running on the device's file-system, issue the following command in

the IPC_INSTALL_DIR directory:

buildhost$ make -f ipc-qnx.mak install

This will install the binaries into the directory specified by DESTDIR in products.mak. It this assumed that DESTDIR is a directory visible to the target filesystem. If not, you should copy

its contents to such a location (e.g. onto an SD card that can be accessed by the EVM).

ipc-qnx.mak

ipc-bios.mak

Run

Configuring the BSP

Installing Tests in QNX

9/29/2020 IPC Install Guide QNX - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/IPC_Install_Guide_QNX 3/7

When building in Windows, some users might get build messages that report a version mismatch in cygwin:

C:/QNX650/host/win32/x86/usr/bin/make -j 1 -Cle.v7 -fMakefile install
 1 [main] ? (5984) C:\QNX650\host\win32\x86\usr\photon\bin\find.exe: *** fa
tal error - system shared memory version mismatch detected - 0x8A88009C/0x2D1E009C.
This problem is probably due to using incompatible versions of the cygwin DLL.
Search for cygwin1.dll using the Windows Start->Find/Search facility
and delete all but the most recent version. The most recent version *should*
reside in x:\cygwin\bin, where 'x' is the drive on which you have
installed the cygwin distribution. Rebooting is also suggested if you
are unable to find another cygwin DLL.

Based on what we observed the binaries are still exported correctly despite the messages. If you do want to eliminate them, you should replace the file cygwin1.dll in

<QNX_INSTALL_DIR>\host\win32\x86\usr\photon\bin with the newest cygwin1.dll you can find on your host machine (do a search on your PC's filesystem in Windows).

Some of the tests rely on corresponding remote core applications to be run on the slave processor(s). The remote processor's applications are loaded when launching the resource

manager. See section #IPC_resource_manager for details on launching the resource manager.

The location of the remote core applications within the IPC product varies based on device.

Remote core applications can be found in <IPC_INSTALL_DIR>/packages/ti/ipc/tests/bin/ti_platform_<your platform name>_* directories.

For example, you can copy the messageq_single.xem4 for OMAP54xx uEVM's IPU onto the device's target filesystem into the bin directory as follows:

buildhost$ copy <IPC_INSTALL_DIR>/packages/ti/ipc/tests/bin/ti_platform_omap54xx_ipu/messageq_single.xem4 <DESTDIR>/armle-v7/bin

'ti_platform_omap54xx_ipu' indicates the platform is 'omap54xx' and the remote core name is 'IPU'. You only need to copy the binaries relevant to your platform.

Much of the functionality of IPC is provided by the resource manager. It can be launched as follows:

target# cd <target directory corresponding to DESTDIR>/armle-v7/bin
target# export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<target directory corresponding to DESTDIR>/armle-v7/usr/lib
target# ipc <CORE1> <remote executable 1> <CORE2> <remote executable 2> ...

<CORE> should correspond to the name of the remote core on which you want the remote executable to be loaded. As a rule of thumb, it is the capitalized version of the core name

specified by the name of the directory from which the executable was copied in the #Installing remote core applications section. For example, if the executable is copied from

"ti_platform_omap54xx_ipu/test_omx_ipu_omap5.xem4", then you should load it as follows:

target# ipc IPU test_omx_ipu_omap5.xem4

The resource manager will register devices in the pathname space for communicating with the IPC. Communication with the IPC is only possible once the needed devices are registered.

The following devices are registered by default when the IPC resource manager is launched:

Device Description

/dev/tiipc Provides the "ti-ipc" protocol. Needed by MessageQ APIs.

/dev/ipc Provides the HWSpinLock functionality. Needed by GateMP APIs.

Additionally, more devices may be registered by the remote core firmware if using the "rpmsg-rpc" protocol. In that case, the name that appears in the pathname space is specified by the

remote core firmware.

Later, when you are done running applications that use IPC and no longer need the resource manager, it can be terminated as follows:

target# cd <target directory corresponding to DESTDIR>/armle-v7/bin
target# slay ipc

The QNX-side of the test applications are already on the target's filesystem in <target directory corresponding to DESTDIR>/armle-v7/bin and <target directory corresponding to

DESTDIR>/armle-v7/bin/tests, assuming the #Installing Tests in QNX and #IPC resource manager sections have been followed and that the resource manager has loaded the remote

core(s) with the executable corresponding to the test you'd like to run.

To find out the syntax to use for running the test (say MessageQApp), run

target# cd <target directory corresponding to DESTDIR>/armle-v7/bin/tests
target# use MessageQApp

To run a test application, execute it on the target's filesystem:

target# cd <target directory corresponding to DESTDIR>/armle-v7/bin/tests
target# ./MessageQApp 10

Here is a list of the main tests that are available in the IPC product:

MessageQApp: Test that creates a single thread that sends messages from host to remote core using MessageQ

Installing remote core applications

IPC resource manager

Running Test Applications

9/29/2020 IPC Install Guide QNX - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/IPC_Install_Guide_QNX 4/7

messageq_single.x* need to be loaded by the resource manager
MessageQMulti: Test that creates multiple threads which send messages from host to remote core using MessageQ

messageq_multi.x* need to be loaded by the resource manager
mmrpc_test: Test that exercises MMRPC

test_omx_ipu_<platform>.x* need to be loaded by the resource manager
Aside from the IPC resource manager, this test also needs the shmemallocator resource manager to be launched beforehand:

 target# cd <target directory corresponding to DESTDIR>/armle-v7/bin
 target# shmemallocator
 target# cd tests
 target# mmrpc_test 1

To give you an idea, the expected output for MessageQApp on the QNX-side should look similar to this:

Using numLoops: 10; procId : 1
Entered MessageQApp_execute
Local MessageQId: 0x1
Remote queueId [0x10000]
Exchanging 10 messages with remote processor IPU...
MessageQ_get #0 Msg = 0x11c9f0
Exchanged 1 messages with remote processor IPU
MessageQ_get #1 Msg = 0x11c9f0
Exchanged 2 messages with remote processor IPU
MessageQ_get #2 Msg = 0x11c9f0
...
...
Exchanged 9 messages with remote processor IPU
MessageQ_get #9 Msg = 0x11c9f0
Exchanged 10 messages with remote processor IPU
Sample application successfully completed!
Leaving MessageQApp_execute

The output on the remote processor can be obtained by running the following on the target filesystem:

target# cat /dev/ipc-trace/IPU

The expected output on the remote processor should look similar to this:

[0][0.000] 16 Resource entries at 0x3000
[0][0.000] messageq_single.c:main: MultiProc id = 1
[0][0.000] [t=0x006c565d] ti.ipc.transports.TransportVirtioSetup: TransportVirtio
Setup_attach: remoteProcId: 0
[0][0.000] registering rpmsg-proto:rpmsg-proto service on 61 with HOST
[0][0.000] [t=0x0072625b] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_create: endPt c
reated: 61
[0][0.000] [t=0x0073e8d9] ti.ipc.rpmsg.MessageQCopy: callback_availBufReady: virt
Queue_toHost kicked
[0][0.000] [t=0x00753771] ti.ipc.rpmsg.MessageQCopy: callback_availBufReady: virt
Queue_fromHost kicked
[0][0.000] [t=0x0076cb49] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_swiFxn:
[0][0.000] Received msg: from: 0x5a, to: 0x35, dataLen: 72
[0][0.000] [t=0x007872e9] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_send: no object
for endpoint: 53
[0][0.000] tsk1Fxn: created MessageQ: SLAVE_CORE0; QueueID: 0x10000
[0][0.000] Awaiting sync message from host...
[0][51.992] [t=0x0c475268] ti.ipc.rpmsg.MessageQCopy: callback_availBufReady: virt
Queue_fromHost kicked
[0][51.992] [t=0x0c48eb28] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_swiFxn:
[0][51.993] Received msg: from: 0x400, to: 0x3d, dataLen: 176
[0][51.993] [t=0x0c4ad220] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_send: calling c
allback with data len: 176, from: 1024
[0][51.993]
[0][52.995] [t=0x0c873ded] ti.ipc.rpmsg.MessageQCopy: callback_availBufReady: virt
Queue_fromHost kicked
[0][52.996] [t=0x0c88b029] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_swiFxn:
[0][52.996] Received msg: from: 0x406, to: 0x3d, dataLen: 40
[0][52.996] [t=0x0c8a8a87] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_send: calling c
allback with data len: 40, from: 1030
[0][52.996]
[0][52.996] Received msg from (procId:remoteQueueId): 0x0:0x1
[0][52.996] payload: 8 bytes; loops: 10 with printing.
[0][52.997] [t=0x0c8eab7e] ti.ipc.rpmsg.MessageQCopy: callback_availBufReady: virt
Queue_fromHost kicked
[0][52.997] [t=0x0c9031bc] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_swiFxn:
[0][52.997] Received msg: from: 0x406, to: 0x3d, dataLen: 40
[0][52.997] [t=0x0c9208fa] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_send: calling c
allback with data len: 40, from: 1030
[0][52.997]
[0][52.997] Got msg #0 (40 bytes) from procId 0
[0][52.997] Sending msg Id #0 to procId 0
[0][52.998] [t=0x0c959f33] ti.ipc.rpmsg.MessageQCopy: callback_availBufReady: virt
Queue_fromHost kicked
[0][52.998] [t=0x0c971df7] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_swiFxn:
[0][52.998] Received msg: from: 0x406, to: 0x3d, dataLen: 40
[0][52.998] [t=0x0c98f3e7] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_send: calling c
allback with data len: 40, from: 1030
[0][52.998]
[0][52.999] Got msg #1 (40 bytes) from procId 0
[0][52.999] Sending msg Id #1 to procId 0
[0][52.999] [t=0x0c9c7a00] ti.ipc.rpmsg.MessageQCopy: callback_availBufReady: virt
Queue_fromHost kicked
[0][52.999] [t=0x0c9df7fc] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_swiFxn:
[0][52.999] Received msg: from: 0x406, to: 0x3d, dataLen: 40
[0][52.999] [t=0x0c9fce5a] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_send: calling c
allback with data len: 40, from: 1030
[0][52.999]
[0][53.000] Got msg #2 (40 bytes) from procId 0

Expected output

9/29/2020 IPC Install Guide QNX - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/IPC_Install_Guide_QNX 5/7

[0][53.000] Sending msg Id #2 to procId 0
[0][53.000] [t=0x0ca36e79] ti.ipc.rpmsg.MessageQCopy: callback_availBufReady: virt
Queue_fromHost kicked
[0][53.000] [t=0x0ca4ea95] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_swiFxn:
[0][53.000] Received msg: from: 0x406, to: 0x3d, dataLen: 40
[0][53.001] [t=0x0ca6c975] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_send: calling c
allback with data len: 40, from: 1030
[0][53.001]
[0][53.001] Got msg #3 (40 bytes) from procId 0
[0][53.001] Sending msg Id #3 to procId 0
...
...
[0][53.007] Got msg #8 (40 bytes) from procId 0
[0][53.007] Sending msg Id #8 to procId 0
[0][53.007] [t=0x0cccd3d7] ti.ipc.rpmsg.MessageQCopy: callback_availBufReady: virt
Queue_fromHost kicked
[0][53.007] [t=0x0cce50ed] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_swiFxn:
[0][53.007] Received msg: from: 0x406, to: 0x3d, dataLen: 40
[0][53.007] [t=0x0cd027bd] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_send: calling c
allback with data len: 40, from: 1030
[0][53.007]
[0][53.008] Got msg #9 (40 bytes) from procId 0
[0][53.008] Sending msg Id #9 to procId 0
[0][53.008] Awaiting sync message from host...

On some platforms, there are standalone examples provided to illustrate how to use specific features in IPC. These standalone examples are designed to be easily rebuilt outside of the

IPC product, and represent a good starting point for development. If available, the examples are located in <IPC_INSTALL_DIR>\examples\archive\<platform of your choice>.

To use the examples, unzip the example you want in a working directory of your choice. Update the products.mak file in the example's directory with the installation locations of the

various dependent components. Then build it. E.g.:

buildhost$ unzip ex02_messageq.zip
buildhost$ cd ex02_messageq
buildhost$ make clean
buildhost$ make
buildhost$ make install

This would produce the host and remote core binaries in an 'install' subdirectory. Tip: Alternatively, for convenience, you can also extract and rebuild all examples available for your

platform at once with this series of commands:

buildhost$ cd <IPC_INSTALL_DIR>/examples
buildhost$ make extract
buildhost$ make
buildhost$ make install

Next step is to copy the content of the 'install' subdirectory into a location accessible by your target board (e.g. SD card). Run the example on the target using IPC by loading the remote

cores like you would with the test applications, then run the example. E.g.:

target# ipc IPU ex02_messageq/debug/server_ipu.xem4 DSP ex02_messageq/debug/server_dsp.xe64T
target# cd ex02_messageq/debug/
target# app_host IPU

In some applications, there may be a need to load or unload cores after the IPC resource manager is already up and running -- e.g. change the DSP executable while keeping the IPU

running.

In order to load and start a core with an executable, you can do the following after having launched the resource manager:

target# echo <slave executable file path> > /dev/ipc-file/<core name>
target# echo 1 > /dev/ipc-state/<core name>

The first command sets the filename of an executable to be loaded, and the second command loads and starts the core with that executable.

To stop and unload a core, use the following command:

target# echo 0 > /dev/ipc-state/<core name>

Keep in mind that this simply puts the core into reset. If there is any on-going communication between the given core and the others, it is the responsibility of the user application to

clean up and terminate IPC on the slave before unloading a core, thus to avoid causing any memory leaks or communication errors.

To find out the state of a slave core (whether it is running or in reset), issue the following command:

target# cat /dev/ipc-state/<core name>

Running standalone examples

Advanced topics

Load and unload individual cores while IPC is running (IPC 3.23.01 and above)

Inspect the state of a slave core (IPC 3.23.01 and above)

Tracing

9/29/2020 IPC Install Guide QNX - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/IPC_Install_Guide_QNX 6/7

When an issue arises, sometimes it is useful to see the output of internal traces from IPC. This section talks about how to view IPC trace from both the host and the slave cores on the

QNX command prompt.

Trace output from the IPC user libraries is controlled using the environment variable IPC_DEBUG, when launching an application that uses IPC. E.g.:

target# IPC_DEBUG=<level> app_host

where <level> can be set to a value between 1 and 3, with 3 being the most verbose.

To show the trace output of the IPC resource manager in the QNX system log, run the following command:

target# sloginfo -m42

The verbosity of the trace can be controlled using the environment variable IPC_DEBUG_SLOG_LEVEL when launching the IPC resource manager. E.g.:

target# IPC_DEBUG_SLOG_LEVEL=<level> ipc DSP1 ex02_messageq/debug/server_dsp1.xe66

where <level> can be set to a value between 0 and 7, with 7 being the most verbose. The default level is 2.

To show all trace output (including IPC's) on a given slave core, simply run the following

target# cat /dev/ipc-trace/<core name>

where <core name> corresponds to the name of the slave core which trace output you are interested in (e.g. DSP1, IPU1 or IPU2 for DRA7xx)

Note that older versions of IPC may use a slightly different path that is based on the MultiProc id of the core of interest: /dev/ipc-trace<id>.

When debugging an issue, the user may wish to have the ability to step through the source code in the IPC resource manager. For this to happen, the IPC resource manager needs to be

built in debug mode with debug symbols. Adding IPC_DEBUG=1 to the file <IPC_INSTALL_DIR>/qnx/Makefile and rebuilding IPC would do the trick:

 ipc3x_dev: utils
 @cd src/ipc3x_dev; \
 make IPC_PLATFORM=$(IPC_PLATFORM) SMP=1 QNX_CFLAGS=$(QNX_CFLAGS) IPC_DEBUG=1

target# make -f ipc-qnx.mak clean
target# make -f ipc-qnx.mak all

IPC 3.x
IPC Users Guide
IPC 3.x FAQ
IPC Install Guide Linux
IPC Install Guide Android
IPC Install Guide BIOS

{{

1. switchcategory:MultiCore=

For technical support on
MultiCore devices, please
post your questions in the
C6000 MultiCore Forum
For questions related to
the BIOS MultiCore SDK
(MCSDK), please use the
BIOS Forum

Please post only comments related
to the article IPC Install Guide
QNX here.

Keystone=

For technical
support on
MultiCore devices,
please post your
questions in the
C6000 MultiCore
Forum
For questions
related to the
BIOS MultiCore
SDK (MCSDK),
please use the
BIOS Forum

C2000=For
technical
support on
the C2000
please
post your
questions
on The
C2000
Forum.
Please
post only
comments
about the
article IPC
Install
Guide
QNX here.

DaVinci=For
technical
support on
DaVincoplease
post your
questions on
The DaVinci
Forum. Please
post only
comments
about the
article IPC
Install Guide
QNX here.

MSP430=For
technical
support on
MSP430
please post
your
questions on
The MSP430
Forum.
Please post
only
comments
about the
article IPC
Install
Guide QNX
here.

OMAP35x=For
technical
support on
OMAP please
post your
questions on
The OMAP
Forum. Please
post only
comments
about the
article IPC
Install Guide
QNX here.

OMAPL1=For
technical
support on
OMAP please
post your
questions on
The OMAP
Forum.
Please post
only
comments
about the
article IPC
Install Guide
QNX here.

MAVRK=For
technical
support on
MAVRK
please post
your
questions
on The
MAVRK
Toolbox
Forum.
Please post
only
comments
about the
article IPC
Install

For technical su
please post you
questions at
http://e2e.ti.com
Please post on
comments abou
article IPC Inst
Guide QNX he
}}

Host-side trace output

Trace from IPC user libraries (IPC 3.35 and above)

Trace from IPC resource manager (IPC 3.35 and above)

Slave-side trace output

Building the IPC resource manager in debug mode (IPC 3.35 and above)

See Also

https://processors.wiki.ti.com/index.php/IPC_3.x
https://processors.wiki.ti.com/index.php/IPC_Users_Guide
https://processors.wiki.ti.com/index.php/IPC_3.x_FAQ
https://processors.wiki.ti.com/index.php/IPC_Install_Guide_Linux
https://processors.wiki.ti.com/index.php/IPC_Install_Guide_Android
https://processors.wiki.ti.com/index.php/IPC_Install_Guide_BIOS
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/microcontrollers/tms320c2000_32-bit_real-time_mcus/f/171.aspx
http://e2e.ti.com/support/dsp/davinci_digital_media_processors/default.aspx
http://e2e.ti.com/support/microcontrollers/msp43016-bit_ultra-low_power_mcus/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/development_tools/mavrk/default.aspx
http://e2e.ti.com/

9/29/2020 IPC Install Guide QNX - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/IPC_Install_Guide_QNX 7/7

Please post only
comments related to the
article IPC Install Guide
QNX here.

Guide QNX
here.

Links
Amplifiers & Linear
Audio
Broadband RF/IF & Digital Radio
Clocks & Timers
Data Converters

DLP & MEMS
High-Reliability
Interface
Logic
Power Management

Processors

ARM Processors
Digital Signal Processors (DSP)
Microcontrollers (MCU)
OMAP Applications Processors

Switches & Multiplexers
Temperature Sensors & Control ICs
Wireless Connectivity

Retrieved from "https://processors.wiki.ti.com/index.php?title=IPC_Install_Guide_QNX&oldid=218208"

This page was last edited on 30 June 2016, at 13:58.

Content is available under Creative Commons Attribution-ShareAlike unless otherwise noted.

https://processors.wiki.ti.com/index.php/File:Hyperlink_blue.png
http://www.ti.com/lsds/ti/analog/amplifier_and_linear.page
http://www.ti.com/lsds/ti/analog/audio/audio_overview.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/clocksandtimers/clocks_and_timers.page
http://www.ti.com/lsds/ti/analog/dataconverters/data_converter.page
http://www.ti.com/lsds/ti/analog/mems/mems.page
http://www.ti.com/lsds/ti/analog/high_reliability.page
http://www.ti.com/lsds/ti/analog/interface/interface.page
http://www.ti.com/lsds/ti/logic/home_overview.page
http://www.ti.com/lsds/ti/analog/powermanagement/power_portal.page
http://www.ti.com/lsds/ti/dsp/embedded_processor.page
http://www.ti.com/lsds/ti/dsp/arm.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/microcontroller/home.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://www.ti.com/lsds/ti/analog/switches_and_multiplexers.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page
http://focus.ti.com/wireless/docs/wirelessoverview.tsp?familyId=2003§ionId=646&tabId=2735
https://processors.wiki.ti.com/index.php?title=IPC_Install_Guide_QNX&oldid=218208
http://creativecommons.org/licenses/by-sa/3.0/

