
9/25/2020 IPC Slave Error Recovery - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/IPC_Slave_Error_Recovery 1/4

IPC Slave Error Recovery

Overview
MMU Faults
Watchdog
Remote Processor Exceptions
Error Recovery

Host OS
Linux Kernel Config for Watchdog support
Disabling Recovery on Linux
Disabling Recovery on QNX

Host Application Recovery
Device Exception Handler

Configuration

Remote Core Debugging
Known Issues

The remote processors code, if not written properly, would cause a variety of exceptions or crashes like any other software. While the remote processor tracing can give diagnostic traces

on the general code flow, it may not be enough to provide accurate information about crashes. Further, any active use-cases would experience a disruption in their execution. They should

be able to gracefully errored out, and be able to reuse the remote processors. The remote core loader (remoteproc on Linux, ipc Resource Manager on QNX) provides the general

infrastructure for different exception types and the ability to dump out useful information for debugging. On Linux, the recovery process is triggered by the remoteproc core, where the

rpmsg virtio devices are destroyed and recreated.

The crashes on remote processors can be classified into three main types:

MMU Faults - A remote processor MMU is unable to fetch an instruction or data address requested by the processor
WatchDog Errors - The code on remote processor is stuck in a loop, and unable to perform any scheduling of other tasks
Internal Exceptions - There can be some internal exceptions that are not exported outside of the remote processor subsystem

The following sections describe how the error notifications work along with the dump of the necessary exception information on DRA7XX devices.

The remote processor MMUs have 32 TLBs, and can cover 4GB of address space. Hardware-assisted Table Walking Logic is also supported through L1 and L2 Page Table Entry (PTE)

Tables. The L1 Table needs to be physically contiguous. These MMUs can generate an interrupt to the host processor on a variety of faults including a TLB Miss (useful only when Table

Walking Logic is not enabled), or a Translation Fault (PTE not found).

On Linux, the remoteproc implementation manages the programming of these MMUs using the kernel's IOMMU framework. The generic remoteproc module programming of the

IOMMU is done directly through the IOMMU domains. On QNX, this programming is automatically handled by the IPC resource manager based on the contents in the resource table.

The crash information is generated by the remote processors themselves. This generation is triggered slightly differently in the Cortex-M4 core and the DSP. For the DSP, there are

special registers in the hardware to aid with MMU fault debugging. For M4, an internal bus error response is sent upon an MMU Fault and this is possible only when the MMU_GP_REG
register is programmed properly. This causes the MMU Fault to generate an internal exception to the M4 core. SYS/BIOS provides the necessary exception handler implementations and

can dump the processor registers and other information such as the executing task handle, its stack pointer and stack size into a user-provided buffer. This exception buffer is published

to the remoteproc (or IPC resource manager for QNX) through the Resource Table.

Please look through the Memory Management Units chapter in device TRMs for more details on the above registers.

The remote processors are running SYS/BIOS, a RTOS that provides a simple scheduler based on hierarchical priorities. It is possible that a particular task may be running a busy loop

and not yield the processor to execute other tasks. A Watchdog timer is used to detect this. There are no dedicated hardware watchdog timers for Cortex M4 cores, so two General

Purpose Timers are used for detecting watchdog on each of the M4 cores.

NOTE

The following General Purpose Timer are powered up on newer 3.14 based TI Linux kernels. GPT9 & GPT4 for IPU2, GPT7 & GPT8 for IPU1, and
GPT10 for DSP1 on DRA7XX

The Watchdog timer period is refreshed continuously on the remote processors by plugging in hooks into the SYS/BIOS scheduler. SYS/BIOS supports hook functions when switching

Tasks or beginning a Swi. The SYS/BIOS has an Idle Task which is the lowest priority task, and is run when there are no active tasks. Both these hook functions and the Idle task would

refresh the watchdog timer, postponing the interrupt/watchdog event as long as the scheduler is actively running and switching tasks.

The interrupt executes a Watchdog error handler function registered by the generic remote core loader through the platform-specific watchdog initialization hook. The handler function

leverages the same remote core loader infrastructure as the MMU fault to dump out the relevant crash information. The remote core loader implementation manages these timers and an

interrupt is generated to the host processor when the corresponding Watchdog timer expires.

Contents

Overview

MMU Faults

Watchdog

9/25/2020 IPC Slave Error Recovery - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/IPC_Slave_Error_Recovery 2/4

In addition to the notification to and handling by remote core loader, the Watchdog expiration interrupt is also handled by SYS/BIOS. This interrupt is vectored to the #Device Exception

Handler(DEH) module's exception handler, which prints details of the exception to the SYS/BIOS trace buffer, as well as dumping register contents to the Deh.outbuf buffer which can

be viewed in CCS with the ROV tool. This remote core handling shows more information than the remote core loader's handler.

This "double handling" would seem to be either a conflict or superfluous, but it can be useful. Either "handler" can be used on its own since they're completely independent. The remote

core loader handler will, by default, ultimately reset the remote processor, thereby possibly preventing the SYS/BIOS handler from running to completion, or at all (we don't really know

since it's a race), and even if it runs to completion, the trace buffer contents will be wiped out upon the subsequent reset/reload of the remote core. The remoteproc's recovery mechanism

can be disabled, in which case the SYS/BIOS handler will run to completion and the resulting output can be examined.

On Linux, the trace output of the remote core with the expired watchdog timer is also viewable even *after* recovery since remoteproc makes a copy of the trace output before

resetting/reloading the remote core. This copy is present in a DEBUG_FS file named "trace<n>_last" in the corresponding remoteproc instance's DEBUG_FS directory. On QNX, the

trace output can be optionally dumped into a file using the '-c' option of the IPC resource manager.

All the exceptions on the remote processors do not trigger an event/interrupt on the host processor directly. There are a number of internal core exceptions that generate an interrupt

only to the specific remote processor. The Cortex-M4 core has about 16 internal interrupt events including various exception events like Non-maskable interrupt (NMI), Bus Fault, Usage

Fault (refer to Exceptions chapter in the Cortex-M4 TRM for further information (http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/BABBGBEC.html)). All memory

accessed by the remote processors have to be defined in an Attribute-MMU (AMMU), and the AMMU also generates a XLATE_MMU_FAULT interrupt to the core. The SYS/BIOS

exception handler implementations are hooked to these exception interrupts and dump out the processor registers and other information such as the executing task handle, its stack

pointer and stack size into a user-provided buffer.

On Linux, these exceptions are notified to the host processor by sending a special mailbox message to the rpmsg messaging bus layer. The rpmsg passes on this notification to the

remoteproc, which then proceeds to perform a crash dump and recovery. On QNX, the host processor is similarly notified by this special mailbox message, and the IPC resource manager

then proceeds to perform recovery.

NOTE

The AMMU is only relevant to the IPUs on DRA7xx.

On Linux, remoteproc is responsible for only the device management of the remote processors, and provides interfaces to init/deinit a core. rpmsg component is the first client user of

remoteproc today, and is responsible for causing a remote processor to be started and stopped. The rpmsg layer then cleans up after itself and deletes any existing devices. This in turn

calls the remove functions of the various drivers hanging on the rpmsg bus. Any userspace operations on these client rpmsg drivers are errored out with a specific error allowing the

userspace applications to gracefully clean up after themselves. The rpmsg virtio devices are destroyed and recreated. The recreation of the rpmsg virtio devices will cause the remote

processor to be rebooted and rpmsg client devices are republished from the firmware running on the remote processors. Any rpmsg client drivers are re-probed, allowing them to export

the driver interface. Synchronization in the rpmsg and remoteproc layers restrict the userspace applications from using a remote processor while the recovery is in progress.

This RPMsg design utilizes the bus infrastructure and driver model in the Linux kernel for performing the error recovery, and keeps the design simple while avoiding race conditions

between open applications and drivers.

On QNX, the IPC resource manager, by itself, accomplishes the same combined role as remoteproc and the rpmsg component. All internal modules in the resource manager are torn

down and recreated. One big difference between QNX and Linux is that on QNX all remote processors (not just the one with the error) that have been loaded are rebooted as all state

information is wiped. This is an approach that guarantees that any existing communication between slave cores are reset and restarted.

Error recovery is a stock feature of the remoteproc framework and is enabled by default. The kernel, once enable with remoteproc, will automatically reload the remote core on which an

MMU fault has been detected.

To detect and recover from Exceptions on the remote core, the remote core must be configured to use #Device Exception Handler (DEH) module. The DEH module also allows for

WatchDog support but must be also be enabled in the Linux kernel. On QNX the Watchdog support is always active and will interact with the DEH module if the latter is configured in.

To enable Watchdog support, you must enable the following config in the kernel.

CONFIG_OMAP_REMOTEPROC_WATCHDOG=y

NOTE

The newer 3.14 based TI Linux kernels support IPU1, IPU2 and DSP1. Previous kernels only supported Watchdog on IPU2 on DRA7XX devices.

There may be instances when the remote core ends up in a loop between crashing and reloading. Error recovery can be controlled with remoteproc's DEBUG_FS support. Each instance

of remoteproc gets an associated DEBUG_FS file named "recovery" that can be written with either "enabled" or "disabled" as follows:

target# echo "disabled" > /debug/remoteproc/remoteproc0/recovery
target# cat /debug/remoteproc/remoteproc0/recovery

Remote Processor Exceptions

Error Recovery

Host OS

Linux Kernel Config for Watchdog support

Disabling Recovery on Linux

http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/BABBGBEC.html

9/25/2020 IPC Slave Error Recovery - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/IPC_Slave_Error_Recovery 3/4

 disabled

The remoteproc DEBUG_FS also supports an additional "recover" option useful to perform a one-time recovery if the current state is "disabled".

On IPC version 3.22 and above, you can simply invoke the 'ipc' command with the '-d' flag to disable recovery.

On older versions of IPC, you would need to modify the IPC source code. Comment out the lines in the function Ipc_recover() in

<IPC_INSTALL_DIR>/qnx/src/ipc3x_dev/ti/syslink/build/Qnx/resmgr/syslink_main.c

<syntaxhighlight lang='c'> static void ipc_recover(Ptr args) { /*

 syslink_dev_t * dev = (syslink_dev_t *)args;

 deinit_ipc(dev, TRUE);
 init_ipc(dev, syslink_firmware, TRUE);
 deinit_syslink_trace_device(dev);
 init_syslink_trace_device(dev);

/

} </syntaxhighlight>

Then rebuild IPC. Use this rebuilt version of the IPC resource manager for debugging purposes.

NOTE

Beginning with IPC v3.36 or greater on Linux.

The transport Rpmsg layer for MessageQ properly detects and handles underlying socket failures. A socket failure typically occurs due to a crashed and/or reloaded remote core. The

transport will inform the MessageQ layer of the failure, allowing MessageQ APIs to return back to the application with a new MessageQ_E_SHUTDOWN error code. This will allow the user

level application to properly clean up and reestablish an IPC communication with a reloaded remote core without having to exit the application or restart LAD.

Both MessageQ_get() and MessageQ_put() will return the new error code. When MessageQ_put() returns an error, the application still owns the message and thus needs to free

(MessageQ_free()) the message and properly close the MessageQ (MessageQ_close()). When MessageQ_get() returns an error, the application simply needs to delete the MessageQ

(MessageQ_delete()).

To reestablish a connection with a recovered and reloaded remote core, the user application can detach (Ipc_detach()) from the reloaded core and reestablish a connection

(Ipc_attach()) to the core until successful (IPC_S_SUCCESS). In some cases Ipc_attach() may require multiple attempts for success as the remote core completes its reload and

restart process.

A test example illustrating this functionality can be found in the IPC product. For the host core, you can find it in IPC_INSTALL_DIR/linux/src/tests/fault.c (http://git.ti.com/cgi

t/cgit.cgi/ipc/ipcdev.git/tree/linux/src/tests/fault.c). The corresponding remote core application can be found in IPC_INSTALL_DIR/packages/ti/ipc/test/fault.c (http://git.ti.co

m/cgit/cgit.cgi/ipc/ipcdev.git/tree/packages/ti/ipc/tests/fault.c).

DEH is a slave side module that handles exceptions and adds the necessary Watchdog timer support that must be configured on the host OS. Exceptions that are unrecoverable need to

be communicated to the host processor so that it can print debug information, do resource cleanup and ultimately reload a slave processor. The notification mechanism for sending

events to the host processor has been consolidated in this module.

The DEH module is provided as part of the IPC 3.x distribution as it is typically used in conjunction with devices that leverage IPC and remote loading features.

NOTE

Beginning with IPC v3.36 or greater, DEH has Watchdog timer configuration capabilities. By default DEH will use GPTimer 4 & 9 on IPU2, GPTimer
7 & 8 on IPU1, and GPTimer 10 on DSP1 for DRAA7XXX devices. In previous versions of DEH in IPC, only IPU2 (with GPTimer 4 & GPTimer 9) on
DRA7XX devices was supported

Below is a simple example to enable DEH (and default Watchdog timer) on a device's remote cores.

To enable DEH on the slave core, add the following to the remote core's configuration (*.cfg) file to handle exceptions. <syntaxhighlight lang='javascript'> var Deh =

xdc.useModule('ti.deh.Deh'); </syntaxhighlight>

To add Watchdog detection on the DSP remote core, add the following to its configuration. <syntaxhighlight lang='javascript'> var Idle = xdc.useModule('ti.sysbios.knl.Idle');

Idle.addCoreFunc('&ti_deh_Deh_idleBegin'); </syntaxhighlight>

To add Watchdog detection on the M4 remote core in SMP mode, add the following to its configuration. <syntaxhighlight lang='javascript'> var Idle =

xdc.useModule('ti.sysbios.knl.Idle'); Idle.addCoreFunc('&ti_deh_Deh_idleBegin', 0); Idle.addCoreFunc('&ti_deh_Deh_idleBegin', 1); </syntaxhighlight>

Watchdog slave support. If IPC power management is configured, make sure to place DEH Idle configuration functions before power management Idle functions.

Disabling Recovery on QNX

Host Application Recovery

Device Exception Handler

Configuration

http://git.ti.com/cgit/cgit.cgi/ipc/ipcdev.git/tree/linux/src/tests/fault.c
http://git.ti.com/cgit/cgit.cgi/ipc/ipcdev.git/tree/packages/ti/ipc/tests/fault.c

9/25/2020 IPC Slave Error Recovery - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/IPC_Slave_Error_Recovery 4/4

If a different Watchdog is needed or desired (instead of the default) for a particular remote core, the following configuration lines can be added to the remote's configuration file. In this

example, GPTimer 7 & 8 are being configured as Watchdodg timers and mapped to IRQs 60 & 61. There is also some Crossbar configuration being included to ensure the timers

interrupts are properly routed to the appropriate core.

<syntaxhighlight lang='javascript'> var WD = xdc.useModule('ti.deh.Watchdog'); WD.timerIds.length = 2; WD.timerSettings.length = 2; WD.timerIds[0] = "GPTimer7";

WD.timerSettings[0].intNum = 60; WD.timerSettings[0].eventId = -1; WD.timerIds[1] = "GPTimer8"; WD.timerSettings[1].intNum = 61; WD.timerSettings[1].eventId = -1;

var Xbar = xdc.useModule('ti.sysbios.family.shared.vayu.IntXbar'); Xbar.connectIRQMeta(60, 38); Xbar.connectIRQMeta(61, 39); </syntaxhighlight>

The following articles describe interesting debugging techniques for issues detected by this error recovery feature:

IPC MMU Fault Debugging
Exception Dump Decoding

NOTE

When an error is detected, typically you will want to disable error recovery to debug the issue. #Disabling Recovery on Linux or #Disabling Recovery
on QNX

Error recovery is supported for IPU slaves using the Early Boot feature in Android starting in 6AL.1.1. Details on Early Boot are here - Linux | QNX.

{{

1. switchcategory:MultiCore=

For technical support on
MultiCore devices, please
post your questions in the
C6000 MultiCore Forum
For questions related to
the BIOS MultiCore SDK
(MCSDK), please use the
BIOS Forum

Please post only comments related
to the article IPC Slave Error
Recovery here.

Keystone=

For technical
support on
MultiCore devices,
please post your
questions in the
C6000 MultiCore
Forum
For questions
related to the
BIOS MultiCore
SDK (MCSDK),
please use the
BIOS Forum

Please post only
comments related to the
article IPC Slave Error
Recovery here.

C2000=For
technical
support on
the C2000
please
post your
questions
on The
C2000
Forum.
Please
post only
comments
about the
article IPC
Slave
Error
Recovery
here.

DaVinci=For
technical
support on
DaVincoplease
post your
questions on
The DaVinci
Forum. Please
post only
comments
about the
article IPC
Slave Error
Recovery
here.

MSP430=For
technical
support on
MSP430
please post
your
questions on
The MSP430
Forum.
Please post
only
comments
about the
article IPC
Slave Error
Recovery
here.

OMAP35x=For
technical
support on
OMAP please
post your
questions on
The OMAP
Forum. Please
post only
comments
about the
article IPC
Slave Error
Recovery
here.

OMAPL1=For
technical
support on
OMAP please
post your
questions on
The OMAP
Forum.
Please post
only
comments
about the
article IPC
Slave Error
Recovery
here.

MAVRK=For
technical
support on
MAVRK
please post
your
questions
on The
MAVRK
Toolbox
Forum.
Please post
only
comments
about the
article IPC
Slave Error
Recovery
here.

For technical su
please post you
questions at
http://e2e.ti.com
Please post on
comments abou
article IPC Slav
Error Recover
}}

Links
Amplifiers & Linear
Audio
Broadband RF/IF & Digital Radio
Clocks & Timers
Data Converters

DLP & MEMS
High-Reliability
Interface
Logic
Power Management

Processors

ARM Processors
Digital Signal Processors (DSP)
Microcontrollers (MCU)
OMAP Applications Processors

Switches & Multiplexers
Temperature Sensors & Control ICs
Wireless Connectivity

Retrieved from "https://processors.wiki.ti.com/index.php?title=IPC_Slave_Error_Recovery&oldid=224839"

This page was last edited on 17 February 2017, at 13:46.

Content is available under Creative Commons Attribution-ShareAlike unless otherwise noted.

Remote Core Debugging

Known Issues

https://processors.wiki.ti.com/index.php/IPC_MMU_fault_debug
https://processors.wiki.ti.com/index.php/SYS/BIOS_FAQs#4_Exception_Dump_Decoding_Using_the_CCS_Register_View
https://processors.wiki.ti.com/index.php/Early_Boot_and_Late_Attach
https://processors.wiki.ti.com/index.php/Early_Boot_and_Late_Attach_in_QNX
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/microcontrollers/tms320c2000_32-bit_real-time_mcus/f/171.aspx
http://e2e.ti.com/support/dsp/davinci_digital_media_processors/default.aspx
http://e2e.ti.com/support/microcontrollers/msp43016-bit_ultra-low_power_mcus/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/development_tools/mavrk/default.aspx
http://e2e.ti.com/
https://processors.wiki.ti.com/index.php/File:Hyperlink_blue.png
http://www.ti.com/lsds/ti/analog/amplifier_and_linear.page
http://www.ti.com/lsds/ti/analog/audio/audio_overview.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/clocksandtimers/clocks_and_timers.page
http://www.ti.com/lsds/ti/analog/dataconverters/data_converter.page
http://www.ti.com/lsds/ti/analog/mems/mems.page
http://www.ti.com/lsds/ti/analog/high_reliability.page
http://www.ti.com/lsds/ti/analog/interface/interface.page
http://www.ti.com/lsds/ti/logic/home_overview.page
http://www.ti.com/lsds/ti/analog/powermanagement/power_portal.page
http://www.ti.com/lsds/ti/dsp/embedded_processor.page
http://www.ti.com/lsds/ti/dsp/arm.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/microcontroller/home.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://www.ti.com/lsds/ti/analog/switches_and_multiplexers.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page
http://focus.ti.com/wireless/docs/wirelessoverview.tsp?familyId=2003§ionId=646&tabId=2735
https://processors.wiki.ti.com/index.php?title=IPC_Slave_Error_Recovery&oldid=224839
http://creativecommons.org/licenses/by-sa/3.0/

