
9/25/2020 Optimize Linux Boot Time - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/Optimize_Linux_Boot_Time 1/10

Optimize Linux Boot Time

Optimizing boot time on Linux based systems
Sanjeev Premi

Introduction
Objectives

Use-case 1: Boot from SDHC Card
Use-case 2: Boot from NAND

Understanding the boot sequence
Measuring boot time

Identify markers
Profiling the bootloaders
Profiling the Linux Kernel

Enable timestamps on kernel prints
Instrument kernel initialization

Areas of optimization
Techniques for optimization

Shedding the bulk
x-loader
u-boot
Linux kernel

Deferred initialization
Build for product

x-loader
u-boot
Linux kernel
Filesystem

Be quiet
x-loader
u-boot
Linux kernel

Avoid duplication
Leverage the SoC speed
Don't forget to remove instrumentation

Doing it yourself
Getting sources

x-loader
U-Boot
Linux Kernel

Building sources
Build x-loader
Build u-boot
Build Linux kernel
Build Linux kernel modules

Install Linux kernel modules
Pre-built binaries

What is current status?
Comparing size of binaries
Comparing boot times
Before and After Demo

What next?
Short term
Long term
More things to try

Frequently Asked Questions
References

Contents

https://processors.wiki.ti.com/index.php/File:TIBanner.png

9/25/2020 Optimize Linux Boot Time - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/Optimize_Linux_Boot_Time 2/10

Boot-time i.e. the time taken by the system to show its "availability" since the power button was pushed on; is a becoming a key

differentiator in the usability vector.

The definition of availability varies across the devices. For example:

Appearance of home screen for devices containing a display e.g. cellphone, media player
An audible tone / LED turning on or changing color for devices without display
Appearance of shell prompt on development systems with console.

As these examples suggest, there isn't an objective measure that can be used across. This article doesn't attempt to define boot-time. It

recognizes the fact that boot-time must be measured in context of the device, its intended usage and associated user expectations.

Specific usage of term 'optimizing' - instead of 'reducing' - sets the overall direction for this article. The reduction can be achieved by

adding hacks/ quirks/ taking custom shortcuts - that are difficult to maintain across component versions. Optimizations are generic and

easily maintainable.

This article describes a typical boot sequence and identifies the opportunities for optimization. It also walks through different

techniques that can be used to optimize the boot time. These optimizations are illustrated with specific patches that currently apply

against the latest PSP 04.02.00.07 release for OMAP35x and Sitara AM37x devices.

This article is augmented with actual patches across the boot-loader(s) and Linux kernel to illustrate the techniques discussed here.

Therefore, discussion is limited to select techniques and changes. The commit messages in the individual patches provide more detailed

description. The differences between SDK and an end-product will be visible in these patches as well.

The SDK tends to generic and inclusive. It is intended to demonstrate maximum features available on the platform and tools to
leverage these features.
An end-product is specific and exclusive. It implements only defined set of use-cases.

To provide a direction to the optimizations, these use-cases are being defined:

Boot from SDHC card
Mount the filesystem from SDHC card itself
Shell on serial console.
A graphical application on the LCD

Boot from NAND
Mount the filesystem from NAND partition.
Shell on serial console.
A graphical application on the LCD

A typical (and simplified) boot sequence in Linux based systems is illustrated below:

Introduction

Objectives

Use-case 1: Boot from SDHC Card

Use-case 2: Boot from NAND

Understanding the boot sequence

https://processors.wiki.ti.com/index.php/AM35x-OMAP35x-PSP_04.02.00.07_Release_Notes

9/25/2020 Optimize Linux Boot Time - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/Optimize_Linux_Boot_Time 3/10

NOTE

* Actual boot sequence depends upon the device used viz. NAND flash, MMC/SD Card, NOR flash etc.

Two stage bootloading is required when the bootloader cannot fit into the internal memory of the processor.
There are multiple inter-dependencies between loading modules and starting services. This picture is presenting a simplified
view for illustration purpose.

Optimization begins with knowing current boot-time, setting the target and defining the boundary conditions. The boundary conditions

are derived from the characteristics of the end-product.

Optimization is an iterative process and we need a reliable mechanism for measure the time. Developers have a variety of options

ranging from C programs that can be compiled to scripts that time stamp each line appearing on the serial port. (More details here (htt

p://elinux.org/Boot_Time#Measuring_Boot-up_Time).)

The author used RealTerm (http://realterm.sourceforge.net/) for the purpose.

Supports logging in Unix date format - easy for analysis
Ability to log directly to a file without displaying on the screen - more accurate measurement
Ability to stop logging after predefined time
No need to switch terminal for interactive session just for the measurement

As discussed above, the overall boot process involves boot-loader(s), Linux kernel and the filesystem. We must identify the markers in

the boot log that can be used as delimiters for each stage of the boot process. This helps in determining the time spent in each stage.

x-loader

First newline character received on the serial console indicates start of x-loader.

u-boot

The banner containing the U-Boot version indicates the start of u-boot.
U-Boot 2010.06 (Apr 16 2011 - 15:22:19)

Linux kernel

First line after this indicates the start of Linux kernel:
Uncompressing Linux... done, booting the kernel.

Measuring boot time

Identify markers

https://processors.wiki.ti.com/index.php/File:Linux-boot-sequence.png
http://elinux.org/Boot_Time#Measuring_Boot-up_Time
http://realterm.sourceforge.net/

9/25/2020 Optimize Linux Boot Time - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/Optimize_Linux_Boot_Time 4/10

File System

INIT: version 2.86 booting

Developers with intimate knowledge of the source code can point that some of the strings are printed much after the start (e.g. U-boot

banner) or much before (e.g. filesystem marker) the actual event. While this is definitely true, these markers serve the purpose well.

No built-in infrastructure exists to profile the bootloaders at the moment. Much of profiling is based upon various strings that are

printed on the serial console. And it is quite effective!

Looking from the end-product perspective - when all development is complete - the bootloaders are required to perform only these 2

tasks:

1. Perform basic initialization
2. Load binary for the next stage (x-loader loads u-boot and u-boot loads the kernel)

Profiling should be restricted to these actions only.

A timestamp can be added to each string printed by the kernel. Auditing the timestamps can helps in calculating actual time spent in

processing. To enable timestamp, select the option "Show timing information on printks" when configuring the kernel.

This translates to following in the .config:

CONFIG_PRINTK_TIME=y

When the Linux kernel boot up, all statically linked drivers and subsystems are initialized. This initialization happens via series of

initcalls. These "initcalls" can be instrumented by adding bootarg initcall_debug to the kernel command-line.

Raw data can be extracted by following command at the shell prompt:

$ dmesg | grep initcall

However, sorting the drivers and subsystems by the time time spent in the respective "initcall" is more useful.

If CONFIG_PRINTK_TIME is enabled:

$ dmesg | grep initcall | sort -k8 -n

If CONFIG_PRINTK_TIME is disabled:

$ dmesg | grep initcall | sort -k6 -n

Same information can be viewed graphically via bootgraph script included in the kernel sources. This requires CONFIG_PRINTK_TIME
to be enabled.

$ dmesg | perl scripts/bootgraph.pl > boot.svg

Any optimization would fall into either of these categories:

Size

Reduce the size of binaries for each successive component loaded.
Remove features that are not required

Speed

Optimize for target processor
Use faster medium for loading primary, secondary boot loaders and kernel.
Reduce number of tasks leading to the boot.

Remove features that are not required

Optimization - in both these areas - must be viewed in full context of the target platform and its use cases.

IMPORTANT

Optimization reduces general applicability due to loss of features. This is true for all components -
bootloaders, kernel and filesystem.

Profiling the bootloaders

Profiling the Linux Kernel

Enable timestamps on kernel prints

Instrument kernel initialization

Areas of optimization

9/25/2020 Optimize Linux Boot Time - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/Optimize_Linux_Boot_Time 5/10

Reducing the size does help in increasing overall speed - mainly due to gains in time to load the components. But, beyond a certain

point, efficiency of implementation gains prominence.

NOTE

This article doesn't attempt to discuss possibility of optimizing the individual kernel subsystems and
modules. However, this may be required in the context of the end-product. For example, code meant for
handling out-of-protocol quirks, non-conforming devices etc. can be excluded if devices are known to follow
defined specs.

The boot-loaders and the Linux kernel contain a default configuration that decides which components are included in the build. These

default configurations become starting point for creating a product specific configuration. These configurations must be tailored to

ensure that unnecessary components aren't being included in the final build.

Some of the features may be required only by developers and don't have much use in the end-product. These features can also be

removed.

Here are few examples of simple decisions that can result in a tailored configuration for a product.

If NAND support is not required, remove it from the configuration

#undef CFG_NAND

If OneNAND support is not required, remove it from the configuration

#undef CFG_ONENAND

If MMC/SD support is not required, remove these from the configuration

#undef CONFIG_MMC
#undef CFG_CMD_MMC
#undef CFG_CMD_FAT
#undef CONFIG_DOS_PARTITION

Avoid long help text for the u-boot commands.

#undef CONFIG_SYS_LONGHELP

Use simple parser - instead of hush

#undef CONFIG_SYS_HUSH_PARSER

If USB support is not required, remove it from the configuration:

#undef CONFIG_USB_OMAP3
#undef CONFIG_MUSB_HCD
#undef CONFIG_MUSB_UDC

If ETHERNET support is not required, remove it from the configuration:

#undef CONFIG_CMD_NET

The drivers and subsystems that are not required in the product can simply be left out of the kernel configuration. Ones that are not

"essential" at the system boot-up can be built as insertable modules. These modules can be inserted into the kernel when they are really

needed.

If the product doesn't support any of MTD devices, the corresponding drivers and support for JFFS2 filesystem can be removed
from the kernel configuration.
Initialization of the capture driver can be delayed until it is really required.

Decision on "What is essential?" and "What is extra?" depends upon the actual product definition.

NOTE

#undef is used here to illustrate the configuration options that can be removed in x-loader and u-boot. To
exclude them from product specific configuration, not defining them is sufficient.

Techniques for optimization

Shedding the bulk

x-loader

u-boot

Linux kernel

Deferred initialization

9/25/2020 Optimize Linux Boot Time - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/Optimize_Linux_Boot_Time 6/10

As discussed above, initcalls for some modules may take quite long delaying the boot process. A short patch had been created (against

kernel version 2.6.27) to defer selected initcalls until after the system is booted - without having to explicitly define them as modules.

Identify the modules that are not essential for the system at boot-up
Locate the initcall definition of these modules in the source code.
Change the declaration of the initcalls from module_init() to deferred_module_init()
Once the system has booted, deferred initcalls can be executed by:

$ echo 1 >/proc/deferred_initcalls

Refer to this (http://elinux.org/Deferred_Initcalls) page for details and link to the original patch.

The default configuration of u-boot and the Linux kernel is friendly for development systems - not the end products. This includes,

building with debug information, additional code for traceability, etc.

Once the development is complete and the individual components have been well tested, much of the debug infrastructure can be

removed.

Here are some suggestions:

Remove option -g from the compiler.

Remove option -g from the compiler.
u-boot is build for armv5 for compatibility reasons. Update compiler flags to build it for armv7-a.

Remove option -g from the compiler.
Disable Kernel debugging
Disable Debug Filesystem
Disable Tracers

When choosing the compiler options, a common dilemma is to optimize for speed or 'size. Here are few data points that should help
make the decision faster:

Unless executing-in-place, the executable images have to be loaded into the memory from the storage media e.g. while booting
from MMC/SD. Bigger means longer time to load the image... which impacts the boot time.
When optimizing for size, the image would be smaller but the execution would is expected to be little slower.

It is common to see the balance shift on either side during the optimization cycles.

A heavy filesystem can negate all the efforts in optimizing the components. Most of the filesystems are derived from the desktop based
systems that may not apply to embedded systems.

IMPORTANT

Initialization scripts need to be reviewed to ensure that only necessary initializations are done.

It is quite common for the filesystems to be built for generic architectures. This may not provide best performance. For example, ARMv7

based system using filesystem built for ARMv5.

In the default configuration, boot-loaders and the Linux kernel print many verbose messages on the serial console. Though quite useful

in the development stages, these messages are not required in the end product. Depending upon the number of prints, turning off these

messages can save 1 - 2 seconds on the overall boot process.

Add the following line to board specific configuration:

#undef CFG_PRINTF

Turning the prints off is a 2 step process:

Add the following line to board specific configuration:

Build for product

x-loader

u-boot

Linux kernel

Filesystem

Be quiet

x-loader

u-boot

http://elinux.org/Deferred_Initcalls

9/25/2020 Optimize Linux Boot Time - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/Optimize_Linux_Boot_Time 7/10

#define CONFIG_SILENT_CONSOLE 1

Set the environment variable silent to 1.

OMAP3_EVM # set silent 1
OMAP3_EVM # saveenv

The prints in the Linux kernel can be turned off by adding bootarg quiet to the kernel command-line.

IMPORTANT

As we have seen above, most of the data used for optimizations is available via these prints. This should,
therefore, be delayed till the last iteration. If the desired boot time isn't achieved, enable the prints again and
look for more opportunities.

Boot-loader(s) and the Linux kernel are independent systems. As generic products, they cannot make assumptions about the state of the

devices before using them. This could lead to same device getting initialized - to same settings - across both. Product development

happens in a controlled environment, where the responsibilities of each layer can be fixed upfront. This would help avoid unnecessary

duplication of initialization code.

As an example, IVA was being initialized in the x-loader, u-boot and later in the Linux kernel for DM37x devices.

IVA is not being used in either of the boot-loaders - x-loader and u-boot.
IVA needs to be initialized only for the SoC variants containing IVA e.g. OMAP3530, DM3730.
For devices like OMAP3503 and AM3703, this initialization is just a waste of time!

There could be similar instances for other drivers...

Running the SoC - processor and other peripherals - at maximum rated performance is easiest way to reduce the boot time. Since, this is

too obvious and doesn't involve any optimization, it is being discussed at the end.

In initial sections of the this article, additional instrumentation was added/ enabled to get objective measure to time spent in each

software layer. One we are satisfied with the progress made, this instrumentation can be turned off. After a certain stage, amount of

time spent in instrumentation becomes proportionally sizable.

Starting with the stock PSP release, a series of patches are available for each of x-loader, u-boot and Linux kernel - that indicate the

changes done to optimize the boot time.

To illustrate the optimization steps, new configurations - specific to the use cases - were created. Key considerations behind this

decision were:

The default configuration remains untouched for developers to try both configurations without changing branch/ reverting patches.
This mimics the development flow customers would be taking to create product specific configuration - starting with a known base.

Each patch contains detailed description of the change being done.

Branch qb_v1.51_OMAPPSP_04.02.00.07 (http://arago-project.org/git/projects/?p=x-load-omap3.git;a=shortlog;h=refs/heads/qb_v
1.51_OMAPPSP_04.02.00.07)

Branch qb_v2010.06_OMAPPSP_04.02.00.07 (http://arago-project.org/git/projects/?p=u-boot-omap3.git;a=shortlog;h=refs/heads/q
b_v2010.06_OMAPPSP_04.02.00.07)

Branch qb_v2.6.37_OMAPPSP_04.02.00.07 (http://arago-project.org/git/projects/?p=linux-omap3.git;a=shortlog;h=refs/heads/qb_v
2.6.37_OMAPPSP_04.02.00.07)

NOTE

* Current set of patches are applicable for the OMAP3EVM.

Linux kernel

Avoid duplication

Leverage the SoC speed

Don't forget to remove instrumentation

Doing it yourself

Getting sources

x-loader

U-Boot

Linux Kernel

http://arago-project.org/git/projects/?p=x-load-omap3.git;a=shortlog;h=refs/heads/qb_v1.51_OMAPPSP_04.02.00.07
http://arago-project.org/git/projects/?p=u-boot-omap3.git;a=shortlog;h=refs/heads/qb_v2010.06_OMAPPSP_04.02.00.07
http://arago-project.org/git/projects/?p=linux-omap3.git;a=shortlog;h=refs/heads/qb_v2.6.37_OMAPPSP_04.02.00.07

9/25/2020 Optimize Linux Boot Time - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/Optimize_Linux_Boot_Time 8/10

In the process of optimizations few generic issues (not related to optimization) were found and fixed on the same branch.
Since, these changes apply over a code freeze sources, they will be rolled into base PSP package in next cycle.
Patches for use-case 2 shall be available soon

$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- omap3_evm_mmc_config
$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-

$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- omap3_evm_quick_mmc_config
$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-

$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- omap3_evm_quick_defconfig
$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- uImage

$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- modules

$ make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi- INSTALL_MOD_PATH=<fs-path> modules_install

If same host machine is being used for building the Linux kernel and the filesystem, then <fs-path> should point to base of the
target filesystem directory.
If using a pre-built filesystem:

Set <fs-path> to a local path e.g. ./_install
Create a tarball of the ./_install directory

$ cd _install
$ tar cvfz ../modules.tgz .

Copy this tarball to root of the installed filesystem and extract the contents.

$ tar xvfz modules.tgz

Now modules can be installed individually / via scripts e.g.

$ modprobe snd

NOTE

Steps to prepare the MMC card and NAND flash are not covered in this article. These steps are described in
the User Guide corresponding to each release.

TODO : Links to download pre-built binaries to be added

As described in initial sections, AM37x EVM was chosen as the first target for the optimization.

This table compares the size of binaries generated with optimized configurations against default configurations.

Component/ File Default Config
(in bytes)

Opt for MMC
(in bytes)

Opt for NAND
(in bytes)

x-loader.bin 18,932 12,460 7,712

u-boot.bin 219,280 64,808 88,908

Building sources

Build x-loader

Build u-boot

Build Linux kernel

Build Linux kernel modules

Install Linux kernel modules

Pre-built binaries

What is current status?

Comparing size of binaries

9/25/2020 Optimize Linux Boot Time - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/Optimize_Linux_Boot_Time 9/10

NOTE

Depending upon the compiler version used, there may be minor differences in the size of binaries generated.
These numbers correspond to Codesourcery Lite v2009q1-203.

Usage scenario Before
(in secs)

Opt for MMC
(in secs)

Opt for
NAND
(in secs)

Time to console prompt TBD TBD TBD

Time to graphical app TBD TBD TBD

TODO : Fill the table with actual values

IMPORTANT

Being a wiki these tables are open for editing. Request users to change add notes/comments and additional
links bottom of the page. All values here will be backed up by actual patches. Please do not link individual
website from the core article.

TODO : Will be added soon...

As discussed earlier in the article, optimizations must be viewed in the context of the end use of product. In the continuum, it would be

unfair to suggest/ believe that no further optimizations are possible.

This section describes additional steps that are planned in near future. It also lists alternatives that can be tried out.

Specific patches shall be added soon to:

Implement the use-case 2 described above
Boost the MPU frequency early in the boot process

Support for other platforms

Developers would also notice that U-Boot sources in this PSP release are based-off 2010.06 release. Cache support was added to
ARM architectures in 2010.09. Migration to this U-Boot version can speed up the U-Boot execution and kernel decompression.
Barebox (http://barebox.org/index.html) is another bootloader that can be used instead of U-Boot.
UBIFS (http://www.linux-mtd.infradead.org/doc/ubifs.html) is a new filesystem that may be considered instead of JFFS2. Since it
doesn't need to scan the media while mounting, filesystem can be mounted in few milliseconds.
Use LZO compression instead of default GZIP for the Linux kernel. It is expected to speed-up kernel decompression.

If NOR flash is used then kernel compression isn't required.

IMPORTANT

Developers should identify the right set of patches to (rework and) apply in their products. Then, use the
learnings from the discussion above to further optimize the boot time.

Q: What does the prefix qb_ in the branch names indicate?

A: This prefix is derived from quick boot. Since Fastboot (http://en.wikipedia.org/wiki/Fastboot) is already
being used in entirely different context, this was next best choice.

Q: Where are the patches corresponding to use case 2 defined above?

A: They are work-in-progress. Will soon be posted to these same branches...

Q: Some of the patches are quite generic. Shouldn't they be up-streamed into respective projects?

A: Very true. Some of these patches were already posted upstream. They will be posted soon.

Comparing boot times

Before and After Demo

What next?

Short term

Long term

More things to try

Frequently Asked Questions

http://barebox.org/index.html
http://www.linux-mtd.infradead.org/doc/ubifs.html
http://en.wikipedia.org/wiki/Fastboot

9/25/2020 Optimize Linux Boot Time - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/Optimize_Linux_Boot_Time 10/10

Q: Why don't we see compiler option -O3 being turned on?

A: Overall time for execution includes two components:

Time to load binary from the storage medium
Actual execution time

Adding option -O3 causes significant increase in the size of generated binaries (as against -Os). Additional
time taken to load the binary offsets any gains achieved through -O3. Based on current experiments, -O3
would make more sense for platforms that use NOR flash as boot medium.

Q: Can it get me to 1 second boot?

A: Depends on the target system. If the product functionality can be met by a very small kernel and filesystem,
then same techniques can help in achieving a 1-sec boot as well. May be less... because we may be able to
eliminate a bootloader stage altogether.

Q: When should we add a splash?

Q: Splash is added to indicate that system is getting ready - quite useful if system takes long to boot. Earliest
opportunity (in current implementation) to show a splash screen is u-boot. Size of image being used for
splash will impact the boot time.
This can be a useful mechanism for branding as well. To use / avoid a splash screen is a compromise
between these factors.

1. http://elinux.org/Boot_Time
2. http://elinux.org/Deferred_Initcalls
3. http://www.linux-mtd.infradead.org/doc/ubifs.html
4. http://free-electrons.com/blog/lzo-kernel-compression/

{{

1. switchcategory:MultiCore=

For technical support on
MultiCore devices, please
post your questions in the
C6000 MultiCore Forum
For questions related to
the BIOS MultiCore SDK
(MCSDK), please use the
BIOS Forum

Please post only comments related
to the article Optimize Linux Boot
Time here.

Keystone=

For technical
support on
MultiCore devices,
please post your
questions in the
C6000 MultiCore
Forum
For questions
related to the
BIOS MultiCore
SDK (MCSDK),
please use the
BIOS Forum

Please post only
comments related to the
article Optimize Linux
Boot Time here.

C2000=For
technical
support on
the C2000
please
post your
questions
on The
C2000
Forum.
Please
post only
comments
about the
article
Optimize
Linux
Boot Time
here.

DaVinci=For
technical
support on
DaVincoplease
post your
questions on
The DaVinci
Forum. Please
post only
comments
about the
article
Optimize
Linux Boot
Time here.

MSP430=For
technical
support on
MSP430
please post
your
questions on
The MSP430
Forum.
Please post
only
comments
about the
article
Optimize
Linux Boot
Time here.

OMAP35x=For
technical
support on
OMAP please
post your
questions on
The OMAP
Forum. Please
post only
comments
about the
article
Optimize
Linux Boot
Time here.

OMAPL1=For
technical
support on
OMAP please
post your
questions on
The OMAP
Forum.
Please post
only
comments
about the
article
Optimize
Linux Boot
Time here.

MAVRK=For
technical
support on
MAVRK
please post
your
questions
on The
MAVRK
Toolbox
Forum.
Please post
only
comments
about the
article
Optimize
Linux Boot
Time here.

For technical su
please post you
questions at
http://e2e.ti.com
Please post on
comments abou
article Optimiz
Linux Boot Tim
here.
}}

Links
Amplifiers & Linear
Audio
Broadband RF/IF & Digital Radio
Clocks & Timers
Data Converters

DLP & MEMS
High-Reliability
Interface
Logic
Power Management

Processors

ARM Processors
Digital Signal Processors (DSP)
Microcontrollers (MCU)
OMAP Applications Processors

Switches & Multiplexers
Temperature Sensors & Control ICs
Wireless Connectivity

Retrieved from "https://processors.wiki.ti.com/index.php?title=Optimize_Linux_Boot_Time&oldid=114351"

This page was last edited on 24 July 2012, at 20:17.

Content is available under Creative Commons Attribution-ShareAlike unless otherwise noted.

References

http://elinux.org/Boot_Time
http://elinux.org/Deferred_Initcalls
http://www.linux-mtd.infradead.org/doc/ubifs.html
http://free-electrons.com/blog/lzo-kernel-compression/
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/microcontrollers/tms320c2000_32-bit_real-time_mcus/f/171.aspx
http://e2e.ti.com/support/dsp/davinci_digital_media_processors/default.aspx
http://e2e.ti.com/support/microcontrollers/msp43016-bit_ultra-low_power_mcus/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/development_tools/mavrk/default.aspx
http://e2e.ti.com/
https://processors.wiki.ti.com/index.php/File:Hyperlink_blue.png
http://www.ti.com/lsds/ti/analog/amplifier_and_linear.page
http://www.ti.com/lsds/ti/analog/audio/audio_overview.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/clocksandtimers/clocks_and_timers.page
http://www.ti.com/lsds/ti/analog/dataconverters/data_converter.page
http://www.ti.com/lsds/ti/analog/mems/mems.page
http://www.ti.com/lsds/ti/analog/high_reliability.page
http://www.ti.com/lsds/ti/analog/interface/interface.page
http://www.ti.com/lsds/ti/logic/home_overview.page
http://www.ti.com/lsds/ti/analog/powermanagement/power_portal.page
http://www.ti.com/lsds/ti/dsp/embedded_processor.page
http://www.ti.com/lsds/ti/dsp/arm.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/microcontroller/home.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://www.ti.com/lsds/ti/analog/switches_and_multiplexers.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page
http://focus.ti.com/wireless/docs/wirelessoverview.tsp?familyId=2003§ionId=646&tabId=2735
https://processors.wiki.ti.com/index.php?title=Optimize_Linux_Boot_Time&oldid=114351
http://creativecommons.org/licenses/by-sa/3.0/

