
9/29/2020 SysLink MigrationGuide - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/SysLink_MigrationGuide 1/8

SysLink MigrationGuide

Introduction
Terms and Abbreviations

Migration from DSPLink
Overview of differences between DSPLink and SysLink
Architectural differences
Build differences

HLOS-side
RTOS-side

Interface differences
Configuration differences
Module differences

PROC -> ProcMgr + Ipc
MSGQ -> MessageQ
NOTIFY -> Notify
RingIO -> RingIO

Migration FAQs

Introduction
This document is the Migration Guide for SysLink.

The purpose of this document is to:

Explain differences between DSPLink and SysLink
Describe some of the architectural and functional improvements in SysLink over DSPLink and gives reasons why users should migrate to SysLink for devices where SysLink is
supported.
Give information on how application writers can migrate to SysLink from the previous product DSPLink.
Give migration information between significant releases of SysLink.

Before reading this document, it is strongly advised to first go through the SysLink UserGuide

Terms and Abbreviations
Abbreviation Description
CCS Code Composer Studio
IPC Inter-Processor Communication
GPP General Purpose Processor e.g. ARM
DSP Digital Signal Processor e.g. C64X
CGTools Code Gen Tools, e.g. Compiler, Linker, Archiver
IPC product IPC product available for SYS/BIOS 6.xx which is used in conjunction with SysLink to provide Inter-processor communication servies

This bullet indicates important information. Please read such text carefully.

DSP/BIOS Link is foundation software for inter-processor communication across the GPP-DSP boundary. This software can be used across platforms:

Using SoC (System on Chip) with GPP and one DSP.
With discrete GPP and DSP.

Supported devices include OMAP3530, OMAP2530, DM6446, DM357, DM6467, DM6437, DA830, OMAPL137, DA850, OMAPL138, DM648, TNETV107X. Supported HLOS operating

systems include Linux, WinCE. DSP/BIOS 5.xx is supported on the DSP.

SysLink is the next generation of DSPLink. New multi-core device architectures such as TI81XX are complex with one master core running HLOS and 3+ cores running SYS/BIOS. They

require:

All to all IPC communication
Processor Manager master for a slave core may be on any other core in the device, and may not always be on the host processor.
It should be possible to communicate between two cores running SYS/BIOS in exactly the same way as the communication would happen between cores running two different
OSes.
Only some basic IPCs may be required between a pair of cores, while others may need more complex IPCs. It should be possible to pick and choose which IPC is required without
pulling in the full software

The above requirements inherently make usage of DSPLink for such devices impossible, since the DSPLink architecture does not support all of the above requirements.

The below sections detail migration information from DSPLink to SysLink.

Contents

Migration from DSPLink

https://processors.wiki.ti.com/index.php/SysLink_UserGuide

9/29/2020 SysLink MigrationGuide - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/SysLink_MigrationGuide 2/8

The below table gives a high level overview of differences between DSPLink and SysLink. Additional details are given in later sections.

Items in red indicate modules/features that are currently not implemented

Feature DSPLink SysLink
Multi-processor
support Star-topology only (one master, multiple slaves) Grid-topology (any-to-any connections)

Configuration Custom configuration on GPP, TCF/CFG on BIOS XDC configuration on RTOS. On HLOS, non-XDC configuration
DSP/BIOS
support 5.xx only 6.xx only

Application build Makefiles On RTOS-side: Makefiles – Configuro / XDC. On HLOS-side: Makefiles
Build
DSPLink/SysLink Makefiles On RTOS-side: XDC build. On HLOS-side: Makefiles

Data Types DSPLink types on HLOS, std.h on BIOS XDC std.h on BIOS & equivalent on HLOS
APIs and data
structures Different APIs and data structures on HLOS & BIOS Shared API interface header file between HLOS & RTOS

IPCs MSGQ in BIOS different from DSPLink, other IPCs in
DSPLink only

All RTOS IPCs in common IPC/SysLink product. Single place for all IPC
needs.

Linux Linux product still using OSAL, custom build system Kernel Linux product made suitable to mainline merge
Key new IPCs - All in DSPLink + FrameQ + HeapMemMP
New Processor
Manager
features

- All in DSPLink + Dynamic Memory Mapping (DMM), Slave Error
Handling, Power Management, Dynamic Linking & Loading

New SysLink
features - Dynamic System Memory Manager – Supports managing physically

contiguous regions and dynamic mapping to devices with slave MMU
Slave Loader COFF ELF (and COFF for selected devices)

Physical links Assumes Shared Memory or memory mapped IO – very
difficult to port in absence of any shared/mapped memory

Portable architecture to support completely different types of physical
links

The below table gives a high level overview of differences between DSPLink and SysLink modules/features

DSPLink module/feature SysLink module/feature
MSGQ (also DSP/BIOS MSGQ) MessageQ
RingIO RingIO
NOTIFY Notify
MPLIST ListMP
POOL Memory module (HeapBufMP/HeapMultiBufMP/HeapMemMP)
MPCS GateMP
CHNL Not supported
PROC ProcMgr
CFG_<PLATFORM>.c Ipc config, slave-specific info read from RTOS-side.
PROC_setup (DSPLink setup) Ipc sync
PROC_read, PROC_write ProcMgr_read, ProcMgr_write
mem=<> boot args mem=<> boot args (current), System Memory Manager (future)
- Utils like NameServer, MultiProc
- FrameQ IPC

This section details architectural differences between SysLink and DSPLink.

DSPLink architecture supports the following types of devices and configurations:

GPP-DSP devices such as DM6446, OMAP3530
Discrete DSPs connected to host over links such as PCI, VLYNQ
One or more slave processors connected to one master processor
The master may run any HLOS (e.g. Linux, WinCE, QNX, PrOS) and the slave must run DSP/BIOS

SysLink architecture enables support for the following features, which are not possible in DSPLink:

SysLink/IPC can be used in devices that do not have master-slave configuration, e.g. multi-core DSP devices such as TCI6488.

In BIOS 5.x/DSPLink, the only available IPC for people to use is the DSP/BIOS MSGQ, with custom Message Queue Transports (MQTs)
SysLink/IPC can be used in configurations where both master & slave are running SYS/BIOS

In BIOS 5.x/DSPLink, DSPLink provides the MSGQ and other such module implementations on GPP-side.
If DSP/BIOS is also run on the GPP, the DSP/BIOS MSGQ conflicts with the DSPLink MSGQ. Other such modules also have similar issues (e.g. CHNL vs. SIO)
Hence DSPLink porting for DSP/BIOS on the GPP cannot be done by just porting the OSAL, but requires significant architectural changes. In such requirements, it has always
been advised to simply go ahead and use the DSP/BIOS MSGQ with a custom written MQT, instead of using DSPLink.
SysLink/IPC can be used in such configurations without any issues.

Overview of differences between DSPLink and SysLink

Architectural differences

9/29/2020 SysLink MigrationGuide - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/SysLink_MigrationGuide 3/8

SysLink can be used in configurations where both processors are running an HLOS

DSPLink only provides communication between master (HLOS) and slave (DSP/BIOS). It does not support configurations or IPCs where multiple processors may be running
HLOS.
In DSPLink, the IPCs are not independent of each other. For example, if a use-case only needs MSGQ for a different physical link than is supported in the standard product, the
entire DSPLink needs to be ported, including PROC module to enable MSGQ to be used.

In SysLink, the IPCs are independently configured and interact with each other at the interface level. ProcMgr for device management is an independent module without
dependence on any IPCs. Similarly, IPCs can be used independent of ProcMgr.

In DSPLink, the IPCs depend on the master processor for initialization. They cannot work intra-processor on the slave seamlessly. They require workarounds or shared memory
initialization from the master to be able to be used on the slave.

In SysLink/IPC, all types of configurations are supported, including inter-processor and intra-processor on HLOS or SYS/BIOS. Configuration of the IPC on all processors
happens independently.

DSPLink works very well with shared memory systems or memory mapped IO such as VLYNQ/PCI. However, completely discrete links such as ethernet, USB, serial etc. pose
major difficulties, and the porting effort would involve rewriting all the DSPLink protocols.

Most of the existing protocol implementations cannot be used as-is.
The implementations would also not be easily pluggable into DSPLink
In SysLink/IPC, major modules such as Notify, MessageQ and NameServer have pluggable transports, which can be independently written to work over different types of
physical links. In future, such implementations would also be provided as part of the default product.

Multiple types of software solutions are currently available for Inter-processor communication on TI devices:

DSPLink
DSPBridge
MSGQ / MQTs
Custom IPCs

The goal of SysLink is to combine the requirements from all these different usage scenarios, into a single product that everyone can use for all IPC and device management needs. Due to

this, the SysLink product must meet the needs of existing DSPLink customers, as well as those of DSPBridge. SysLink must provide a super-set of essential features and functionality as is

present in these existing products. In addition, the SysLink product, in conjunction with the BIOS-side IPC product is also expected to meet the needs of existing users of DSP/BIOS

Message Queue Transport products on DSP-only multi-core devices not covered by DSPLink or DSPBridge.

DSPLink is built with a custom build system that is present within the 'make' folder in the DSPLink package.

SysLink uses kconfig for building the kernel-side and a simple make-based build system for building the user-side. All the rules for building the kernel and user-side are present within

single files:

$SYSLINK_ROOT/ti/syslink/buildutils/hlos/knl/Makefile.inc
$SYSLINK_ROOT/ti/syslink/buildutils/hlos/usr/Makefile.inc

DSPLink is built with a custom build system that is present within the 'make' folder in the DSPLink package.

SysLink uses xdc build for building the RTOS-side SysLink library as well as sample applications.

Type DSPLink SysLink
Product
partitioning DSPLink - DSP/BIOS product partitioning SysLink - IPC product partitioning

HLOS
modules

All the HLOS-side modules are available
as part of DSPLink product

All the HLOS-side modules are available as part of SysLink product. In addition, BIOS-side
FrameQ and RingIO modules are also available as part of the SysLink product

RTOS
modules

NOTIFY, MPCS, MPLIST, RingIO module
are part of DSPLink product. MSGQ, SIO
are part of BIOS.

BIOS-side FrameQ and RingIO modules are part of the SysLink product. All others, including
MessageQ, Notify, ListMP, their transports and subsidiary modules are part of IPC product

SIO/CHNL
module

The SIO module on BIOS-side maps to
CHNL module on HLOS-side. Streaming based protocol mapping to issue-reclaim model is not currently present in SysLink.

API
differences
between
HLOS and
RTOS

The APIs have some differences between
the HLOS and RTOS-side. For example,
MSGQ APIs are not identical

For the user-interface, a header file package available as part of the IPC product in ti/ipc is used
on both HLOS and RTOS-side. All modules, APIs and data types that are usable by applications
are part of this common header file package. These headers are implemented on BIOS-side as
part of IPC product and on HLOS-side as part of SysLink product. This ensures that the APIs and
user-interface is identical.

Header
files

Header files are present in gpp/inc and
dsp/inc folders. User-specific headers and
internal headers are mixed so application
may not know which headers to use.

Header files that application uses are in the package folder. e.g. ti/syslink/ProcMgr.h and should
be included by applications accordingly. Internal header files are in syslink/inc folder.

Header
files for
build

For exported header files also, application
must give the base paths for the inc
folders and all their sub-folders for
building either DSPLink or applications
since the headers are mixed.

For building applications, users must give only the base package path as a base for include
paths, since all headers are included as relative from the base path (e.g. ti/syslink/ProcMgr.h -
refer to sample apps). For building SysLink, the paths in syslink/inc and their sub-folders must be
given as base.

Build differences

HLOS-side

RTOS-side

Interface differences

9/29/2020 SysLink MigrationGuide - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/SysLink_MigrationGuide 4/8

Data types The data types used on BIOS-side are
BIOS std.h, whereas those used on
HLOS-side are DSPLink-defined specific
types.

BIOS-side uses types from xdc/std.h, whereas HLOS-side uses identically defined types
available as part of the SysLink product in ti/syslink/Std.h. Applications must include the
appropriate types header file before including any SysLink/IPC header files.

Type DSPLink SysLink
RTOS
configuration

TCF / CFG in DSP/BIOS. No DSPLink
configuration on RTOS-side CFG in IPC and SysLink

HLOS
configuration CFG_<PLATFORM>.c Module configuration to be matched up inside platform-specific Platform.c file

Configuration
passing

Configuration is taken on HLOS-side and
passed to BIOS-side

Configuration is taken into RTOS-side and read from the slave target memory to
configure the HLOS-side

Memory map
configuration
for slave
executable

Memory map is configured in
CFG_<PLATFORM>.c for HLOS and
tcf/platform_<PLATFORM>.xs for BIOS-side

Memory map for slave executable is using Platform.xdc on BIOS-side and HLOS-side
configures itself by doing the required mappings when loading BIOS code and data
through the ProcMgr loader.

Memory map
configuration
for shared
memory

Memory map is configured in
CFG_<PLATFORM>.c (DSPLINKMEM,
DSPLINKMEM1 regions) for HLOS and
tcf/platform_<PLATFORM>.xs for BIOS-side

Memory map for shared memory is using cfg file on BIOS-side (SharedRegion
configuration) and HLOS-side configures itself by reading the configuration information
for SharedRegion mappings from the slave target memory. No matching up is required
on HLOS and RTOS.

The PROC module in DSPLink is responsible for device management of the slave DSP as well as for overall DSPLink setup and configuration of the IPC modules. It is also responsible for

synchronization between the GPP and DSP sides of DSPLink.

In SysLink, the ProcMgr module is responsible for device management of the slave processor. The Ipc module is responsible for overall SysLink setup and configuration, and for

synchronization between the IPC modules between each pair of processors.

Functionality DSPLink SysLink

Overall setup
PROC_setup does overall DSPLink
setup of all DSPLink modules from
the calling process

On HLOS-side, SysLink_setup does overall SysLink setup of all modules from the
calling process. On RTOS-side, internal module startups take care of overall IPC
setup.

Configuration of all modules PROC_attach does configuration of
all modules

On HLOS-side, SysLink_setup and Ipc_control
(Ipc_CONTROLCMD_LOADCALLBACK), which internally calls Ipc_start, do
configuration of all modules. On RTOS-side, Ipc_start does configuration of all
modules.

Hardware configuration and
power up for the slave
processor

PROC_attach ProcMgr_attach

Loading the slave with
executable from HLOS file
system

PROC_load ProcMgr_load

Starting the execution of
slave processor from its
entry point

PROC_start ProcMgr_start

Synchronizing IPC modules
between each pair of
processors

PROC_start On HLOS-side, Ipc_control (Ipc_CONTROLCMD_STARTCALLBACK), which
internally calls Ipc_attach. On RTOS-side, Ipc_attach.

Stopping the execution of
slave processor by placing
it in reset

PROC_stop ProcMgr_stop

Cleanup synchronizing IPC
modules between each pair
of processors

PROC_stop clears the
synchronization information

On HLOS-side, Ipc_control (Ipc_CONTROLCMD_STOPCALLBACK), which internally
calls Ipc_detach and Ipc_stop. On RTOS-side, Ipc_detach.

Power down for the slave
processor PROC_detach ProcMgr_detach

Overall cleanup PROC_destroy SysLink_destroy
Read from slave memory PROC_read ProcMgr_read
Write into slave memory PROC_write ProcMgr_write
Get the state of the slave
processor PROC_getState ProcMgr_getState

Map to slave MMU (if
present) PROC_control ProcMgr_map (generic API for all mappings)

Get address of symbol in
slave executable PROC_GetSymbolAddress ProcMgr_getSymbolAddress

Loader type COFF, NO_LOADER, BINARY, ELF (default), COFF, if no load/start is needed, corresponding ProcMgr APIs don't

Configuration differences

Module differences

PROC -> ProcMgr + Ipc

9/29/2020 SysLink MigrationGuide - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/SysLink_MigrationGuide 5/8

STATIC need to be called.

The MSGQ module in DSPLink is responsible for exchanging messages of variable length between the clients on one or more processors. In SysLink, the MessageQ module provides the

same features as the MSGQ module in DSPLink

Functionality DSPLink SysLink
API names MSGQ_<API name> MessageQ_<API name>

Module location HLOS-side MSGQ module in DSPLink and BIOS-side MSGQ module
in BIOS

HLOS-side MessageQ module in SysLink and BIOS-side
MessageQ module in IPC product

Module configuration
on BIOS

Is not configured using standard TCF/CFG, except for basic
useMSGQ flag. All actual configuration happens through an instance
of type MSGQ_Config called MSGQ_config that must be built with
the BIOS executable

Configuration happens in the same way as all other
modules in BIOS/IPC, using XDC config

MessageQ instance
creation MSGQ_open MessageQ_create

Opening a handle to
a MessageQ instance
on local/remote
processor

MSGQ_locate MessageQ_open

Memory managers
used for messaging

On BIOS-side, POOL_config instance of type POOL_Config must be
built in with the BIOS executable. IDs thus defined through the array
of pools are used for passing to MSGQ_alloc

Heap handle must be passed to MessageQ_registerHeap
API through arbitrarily defined (but matching on all
processors) heapId. This heapId is then used for passing to
MessageQ_alloc

Transports
configuration on
RTOS

Must be explicitly configured through MSGQ_Config structure Internally automatically created and linked up based on
platform being used.

Transports
configuration on
HLOS

Must be explicitly configured by calling MSGQ_transportOpen/Close
APIs

Internally automatically created and linked up based on
platform being used.

Local messaging Available using MSGQ module Available using MessageQ module
Readers/Writers Single reader, multiple writers Single reader, multiple writers

The NOTIFY module in DSPLink abstracts physical hardware interrupts into multiple logical events. It is a simple and quick method of sending up to a 32-bit message. In SysLink/IPC,

the Notify module provides the same features as the NOTIFY module in DSPLink

Functionality DSPLink SysLink
API names NOTIFY_<API name> Notify_<API name>

Module location HLOS-side and BIOS-side NOTIFY module in
DSPLink HLOS-side Notify module in SysLink and BIOS-side Notify module in IPC product

Module
configuration on
BIOS

Is not configured using standard TCF/CFG.
Configuration happens from HLOS-side and is
sent to BIOS-side as part of overall DSPLink
configuration exchange mechanism.

Configuration happens in the same way as all other modules in BIOS/IPC, using
XDC config

Support for
multiple
physical
interrupts

Identified through IPS ID in APIs and configured
as a separate IPS instance

Identified through lineId in APIs and configured automatically internally depending on
platform being used.

Register for
Notify event NOTIFY_register

Notify_registerEvent, Notify_registerEventSingle. The Notify_registerEventSingle
API is used when only a single client will ever register for the eventId, and gives a
faster path, as well as returns error if additional registrations are attempted for this
event ID.

Unregister
Notify event NOTIFY_unregister Notify_unregisterEvent, Notify_unregisterEventSingle

Send Notify
event NOTIFY_notify Notify_sendEvent

Notify callback
function
signature

Parameters are eventNo, arg (provided during
register) and info (payload) Parameters are procId, lineId, eventId, arg and payload.

Separate
module
initialization

Not possible. Done as part of DSPLink Can be used and initialized separately, independent from the rest of SysLink (if other
modules are not required) by using Notify_attach/detach directly.

Disable all
notifications Not available in DSPLink

Notify_disable disables receiving all notifications for a particular procId-lineId
combination. Equivalent to disabling the physical interrupt line. Notify_sendEvent
called when other side has disabled notifications gives an error on sending
processor.

Restore all
notifications Not available in DSPLink Notify_restore restores receiving all notifications for a particular procId-lineId

combination. Equivalent to enabling the physical interrupt line.
Disable Not available in DSPLink Notify_disableEvent disables receiving notifications for a specific procId-lineId-

MSGQ -> MessageQ

NOTIFY -> Notify

9/29/2020 SysLink MigrationGuide - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/SysLink_MigrationGuide 6/8

notifications for
a specific
eventId

eventId combination. Notify_sendEvent called for this procId-lineId-eventId when
other side has disabled notifications gives an error on sending processor.

Enable
notifications for
a specific
eventId

Not available in DSPLink Notify_enableEvent enables receiving notifications for a particular procId-lineId-
eventId combination.

Reserved
events

Some events are used internally by DSPLink
modules, and checks are done internally if
application attempts to register for any of these
events

Concept of reserved events is available. A configurable number of events can be
specified as reserved events. When using these events, a special mask needs to be
applied to the event ID before calling the APIs. This ensures that applications cannot
inadvertantly use these reserved events.

Check to see if
event is
available

No API that returns information whether event is
available to be used by applications

Notify_eventAvailable returns information that indicates to applications whether the
specified eventId is free for their use.

Check number
of interrupt lines
available

No run-time API that returns information about
number of available interrupt lines Notify_numIntLines returns information about number of available interrupt lines

Check whether
interrupt line is
registered

No run-time API that returns information about
whether specified interrupt line is registered

Notify_intLineRegistered returns information about whether specified interrupt line is
registered.

Local
notifications Not available in DSPLink Available using Notify module

Readers/Writers Multiple readers, multiple writers Multiple readers, multiple writers

The RingIO module provides Ring Buffer based data streaming, optimized for audio/video processing. In SysLink/IPC, the RingIO module provides the same features as the RingIO

module in DSPLink

Functionality DSPLink SysLink
API names RingIO_<API name> RingIO_<API name>
Module location HLOS-side and BIOS-side RingIO module in DSPLink HLOS-side and BIOS-side RingIO module in SysLink
Module
configuration on
BIOS

Is not configured using standard TCF/CFG. Configuration
happens from HLOS-side and is sent to BIOS-side as part
of overall DSPLink configuration exchange mechanism.

Configuration happens in the same way as all other modules in BIOS/IPC,
using XDC config

Creation of
RingIO instance RingIO_create returning status

RingIO_Params_init for initialization of parameters with default values.
RingIO_create for creation of the instance. It returns handle, NULL handle
means failure. The handle returned from create is not used in applications,
and the one returned from RingIO_open is used.

Opening of
RingIO instance

RingIO_open returning handle, which is used for all further
RingIO APIs

RingIO_open to open by name, or RingIO_openByAddr to open by shared
address (does not use NameServer and is faster if the sharedAddr is
known. Both APIs return status. Handle returned as return parameter is
used for all further RingIO APIs.

Set notification RingIO_setNotifier for both registering and unregistering
notifications

RingIO_registerNotifier for registering notifications and
RingIO_unregisterNotifier for unregistering notifications.

Notification
types

5 types: RINGIO_NOTIFICATION_NONE,
RINGIO_NOTIFICATION_ALWAYS,
RINGIO_NOTIFICATION_ONCE,
RINGIO_NOTIFICATION_HDWRFIFO_ALWAYS,
RINGIO_NOTIFICATION_HDWRFIFO_ONCE

The same 5 types: RingIO_NOTIFICATION_NONE,
RingIO_NOTIFICATION_ALWAYS, RingIO_NOTIFICATION_ONCE,
RingIO_NOTIFICATION_HDWRFIFO_ALWAYS,
RingIO_NOTIFICATION_HDWRFIFO_ONCE

Send force
notification RingIO_sendNotify RingIO_notify

Acquire/Release
data RingIO_acquire/RingIO_release RingIO_acquire/RingIO_release

Set/get fixed
size attribute RingIO_setAttribute, RingIO_getAttribute RingIO_setAttribute, RingIO_getAttribute

Set/get variable
size attribute RingIO_setvAttribute, RingIO_getvAttribute RingIO_setvAttribute, RingIO_getvAttribute

Setting attribute
at any offset Available in DSPLink Not available in SysLink. Attribute is set only at offset 0 for simplication of

RingIO attribute logic.
Cancellation of
acquired RingIO
buffer

RingIO_cancel RingIO_cancel

Hard/soft flush
of RingIO
released data

RingIO_flush RingIO_flush

Helper APIs for
RingIO to get
RingIO status
information

Helper APIs for RingIO_getValidSize,
RingIO_getEmptySize, RingIO_getValidAttrSize,
RingIO_getEmptyAttrSize, RingIO_getAcquiredOffset,
RingIO_getAcquiredSize, RingIO_getWatermark

Helper APIs for RingIO_getValidSize, RingIO_getEmptySize,
RingIO_getValidAttrSize, RingIO_getEmptyAttrSize,
RingIO_getAcquiredOffset, RingIO_getAcquiredSize,
RingIO_getWatermark

Local RingIO on
RTOS-side

Possible in DSPLink, but needs special gel file to initialize
some modules from HLOS-side Available using RingIO module on RTOS-side without any special changes

RingIO -> RingIO

9/29/2020 SysLink MigrationGuide - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/SysLink_MigrationGuide 7/8

Local RingIO on
HLOS-side

Not possible in DSPLink Available using RingIO module on HLOS-side without any special changes.

Readers/Writers Single reader, single writer Single reader, single writer

Migration FAQs
Will SysLink APIs be backward compatible to DSPLink APIs?

No. Due to significant changes in architecture, configuration approach and modules, the SysLink APIs will not be backward compatible to DSPLink APIs.
Do application writers also need to build with XDC tools?

No, only configuro needs to be used to configure IPC on RTOS-side. Makefiles can be used for the application build. HLOS-side shall provide non-*XDC based configuration.
Will SysLink/IPC take care of all IPC scenarios such as multi-core DSP (TCI6488), heterogenerous multi-core (OMAP3530)?

Yes, it is architected to take care of all such scenarios.
Can I use SysLink with BIOS 5.xx?

No, SYS/BIOS 6.xx must be used.
My s/w stack is based on DSPLink with WinCE.Can I port SysLink to other OS like WinCE?

Yes, SysLink product is also available as a porting kit similar to DPSLink. The presence of an OS Abstraction Layer makes it easy to port to other Operating Systems. While the
first product release of SysLink is on Linux, it is planned to make ports of SysLink to other OSes such as WinCE also available in the future.

My s/w stack is based on DSPLink with DM6446. Can I port SysLink to other platforms like DM6446 etc?

It is possible to port SysLink to devices such as DM6446. The existing port of SysLink, similar to DSPLink, only requires shared memory and h/w interrupts between the pair of
cores to be connected for IPC. It is possible to port the relevant SysLink modules to make it work on DM6446 also.

I already have a s/w stack on DSPLink. Why should I move to SysLink?

Please see the above sections in this document: Migration from DSPLink, especially the section on Architectural differences. It explains why architecturally, DSPLink does not
support porting to some of the new multi-core devices such as TI81XX. In addition, these sections also describe some of the other design as well as functional improvements in
SysLink over DSPLink.

What is the performance difference between the two?

In profiling the common modules between DSPLink and SysLink on Linux, the performance between the two is seen to be comparable, with SysLink giving slightly better
performance.

Can DSPLink and SysLink co-exist?

Since DSPLink and SysLink compete for the same hardware resources, it is not possible for both DSPLink and SysLink to coexist for communication between the same pair of
processors. It is advisable to use SysLink on all cores to make the best use of the IPC features available. If it is not possible to use SysLink on all cores due to some specific
requirements such as legacy content on the DSP, it may be possible to make changes in DSPLink & SysLink to use SysLink between some of the processors, and DSPLink
between any one pair. For example, on TI81XX, it is possible to modify the SysLink code, and specially port DSPLink to use DSPLink between ARM Cortex A8 <-> DSP, and
SysLink in the other configurations with Video-M3 & VPSS-M3. However, this is not advised and not supported by the TI software.
Also, note that if used in such a configuration, it is not possible to use SysLink/IPC for communication between Video-M3/VPSS-M3 <-> DSP, since DSPLink only works with
SYS/BIOS 6 legacy layer, whereas SysLink/IPC use the new modules added in SYS/BIOS 6 for IPC.
Also, note that since the system heap would only work between the processors controlled by SysLink, any buffers allocated using system heap cannot be freed on DSP, and
similarly any buffers allocated using POOL module in DSPLink on the DSP/ARM Cortex A8 cannot be freed by any other processors where POOL module is not supported.

Will you stop supporting DSPLink now that SysLink is available.

There are no plans as of now to stop support for DSPLink.

{{

1. switchcategory:MultiCore=

For technical support on
MultiCore devices, please
post your questions in the
C6000 MultiCore Forum
For questions related to
the BIOS MultiCore SDK
(MCSDK), please use the
BIOS Forum

Please post only comments related
to the article SysLink
MigrationGuide here.

Keystone=

For technical
support on
MultiCore devices,
please post your
questions in the
C6000 MultiCore
Forum
For questions
related to the
BIOS MultiCore
SDK (MCSDK),
please use the
BIOS Forum

Please post only
comments related to the
article SysLink
MigrationGuide here.

C2000=For
technical
support on the
C2000 please
post your
questions on
The C2000
Forum. Please
post only
comments
about the article
SysLink
MigrationGuide
here.

DaVinci=For
technical
support on
DaVincoplease
post your
questions on
The DaVinci
Forum. Please
post only
comments
about the article
SysLink
MigrationGuide
here.

MSP430=For
technical
support on
MSP430 please
post your
questions on
The MSP430
Forum. Please
post only
comments
about the article
SysLink
MigrationGuide
here.

OMAP35x=For
technical
support on
OMAP please
post your
questions on
The OMAP
Forum. Please
post only
comments
about the article
SysLink
MigrationGuide
here.

OMAPL1=For
technical
support on
OMAP please
post your
questions on
The OMAP
Forum. Please
post only
comments
about the article
SysLink
MigrationGuide
here.

MAVRK=For
technical
support on
MAVRK please
post your
questions on
The MAVRK
Toolbox Forum
Please post on
comments
about the artic
SysLink
MigrationGuid
here.

Links
Amplifiers & Linear
Audio
Broadband RF/IF & Digital Radio
Clocks & Timers
Data Converters

DLP & MEMS
High-Reliability
Interface
Logic
Power Management

Processors

ARM Processors
Digital Signal Processors (DSP)
Microcontrollers (MCU)
OMAP Applications Processors

Switches & Multiplexers
Temperature Sensors & Control ICs
Wireless Connectivity

Retrieved from "https://processors.wiki.ti.com/index.php?title=SysLink_MigrationGuide&oldid=74369"

This page was last edited on 10 August 2011, at 14:39.

http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/microcontrollers/tms320c2000_32-bit_real-time_mcus/f/171.aspx
http://e2e.ti.com/support/dsp/davinci_digital_media_processors/default.aspx
http://e2e.ti.com/support/microcontrollers/msp43016-bit_ultra-low_power_mcus/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/development_tools/mavrk/default.aspx
https://processors.wiki.ti.com/index.php/File:Hyperlink_blue.png
http://www.ti.com/lsds/ti/analog/amplifier_and_linear.page
http://www.ti.com/lsds/ti/analog/audio/audio_overview.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/clocksandtimers/clocks_and_timers.page
http://www.ti.com/lsds/ti/analog/dataconverters/data_converter.page
http://www.ti.com/lsds/ti/analog/mems/mems.page
http://www.ti.com/lsds/ti/analog/high_reliability.page
http://www.ti.com/lsds/ti/analog/interface/interface.page
http://www.ti.com/lsds/ti/logic/home_overview.page
http://www.ti.com/lsds/ti/analog/powermanagement/power_portal.page
http://www.ti.com/lsds/ti/dsp/embedded_processor.page
http://www.ti.com/lsds/ti/dsp/arm.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/microcontroller/home.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://www.ti.com/lsds/ti/analog/switches_and_multiplexers.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page
http://focus.ti.com/wireless/docs/wirelessoverview.tsp?familyId=2003§ionId=646&tabId=2735
https://processors.wiki.ti.com/index.php?title=SysLink_MigrationGuide&oldid=74369

9/29/2020 SysLink MigrationGuide - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/SysLink_MigrationGuide 8/8

Content is available under Creative Commons Attribution-ShareAlike unless otherwise noted.

http://creativecommons.org/licenses/by-sa/3.0/

