
9/29/2020 Using IPC in an Android app - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/Using_IPC_in_an_Android_app 1/5

Using IPC in an Android app

Using IPC 3.x in a Google Play App
Prerequisites
Procedure

Update slave executable on the target
Create an APK file with an application that invokes IPC
Install the app and run it

Reference code

Using IPC 3.x in a Google Play App
IPC (http://processors.wiki.ti.com/index.php/IPC_Users_Guide/About_IPC) 3.x has built-in Android support that allows it to be built and used in 'system applications' in the Android

source tree. This topic explores what needs to be done in order for native apps developed using the Google NDK to take advantage of services provided by IPC. We'll take a look at how to

implement the host-side code of the IPC example ex02_messageq in the context of a native Android App.

In our procedure we used a DRA7XX development board, but technically this can be done on any device that is supported by IPC.

Obtain a DRA7XX development board

Download and install the following packages:

Android SDK/ADT bundle (https://developer.android.com/sdk/installing/bundle.html)
Android NDK (https://developer.android.com/tools/sdk/ndk/index.html)
TI Android source tree release 6AK.1.0 (http://omappedia.org/wiki/6AK.1.0_Release_Notes)
IPC 3.x for Android (http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ipc/index.html)

Follow the directions in the IPC Install Guide (http://ap-fpdsp-swapps.dal.design.ti.com/index.php/IPC_Install_Guide_Android) to install and rebuild IPC under the 'hardware/ti'

directory as instructed.

You should then follow the instructions in the TI Android source tree release to create all the images and flash them onto your DRA7xx board. You may want to try running an IPC test or

example afterwards to ensure your setup is fully functional. The Android 'adb' utility needs to be used for this procedure, so make sure your development board is connected to your host

development machine via a USB cable.

Rebuild the ex02_messageq example in IPC (refer to IPC documentation on how to do this), after updating 'ex02_messageq/makefile' with a reduced PROCLIST that only contains the

list of the slaves for which we want to build an image. For example, modify it as follow if we just want to build the image for IPU2:

edit PROCLIST list to control how many executables to build
PROCLIST = ipu2

Boot up your development board. Copy the slave image from your development machine to your target's '/vendor/firmware' directory using adb:

dev host# adb push <IPC INSTALL DIR>/examples/ex02_messageq/ipu2/bin/debug/server_ipu2.xem4 /vendor/firmware/dra7-ipu2-fw.xem4

Import and rebuild the sample NDK application described in the section "Exploring the native-activity Sample Application" on the Android NDK page (https://developer.android.com/to

ols/sdk/ndk/index.html).

Copy the 'ex02_messageq/host/shared' folder into the '<workspace_path>/NativeActivity' directory

Copy 'ex02_messageq/host/App.c' and 'ex02_messageq/host/App.h' into the '<workspace_path>/NativeActivity/jni' directory

Modify 'main.c' in the NativeActivity project's jni directory to use IPC:

<syntaxhighlight lang=c> /* ... */

1. include <android_native_app_glue.h>

/* package header files */

1. include <ti/ipc/Std.h>
2. include <ti/ipc/Ipc.h>

Contents

Prerequisites

Procedure

Update slave executable on the target

Create an APK file with an application that invokes IPC

http://processors.wiki.ti.com/index.php/IPC_Users_Guide/About_IPC
https://developer.android.com/sdk/installing/bundle.html
https://developer.android.com/tools/sdk/ndk/index.html
http://omappedia.org/wiki/6AK.1.0_Release_Notes
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ipc/index.html
http://ap-fpdsp-swapps.dal.design.ti.com/index.php/IPC_Install_Guide_Android
https://developer.android.com/tools/sdk/ndk/index.html

9/29/2020 Using IPC in an Android app - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/Using_IPC_in_an_Android_app 2/5

1. include <ti/ipc/MultiProc.h>

/* local header files */

1. include "App.h"

/* Which slave to talk to */ static String Main_remoteProcName = "IPU2";

1. define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO, "native-activity", __VA_ARGS__))
2. define LOGW(...) ((void)__android_log_print(ANDROID_LOG_WARN, "native-activity", __VA_ARGS__))

/* ... */

void android_main(struct android_app* state) {

 struct engine engine;
 UInt16 remoteProcId;
 Int status = 0;

/* ... */

 if (state->savedState != NULL) {
 // We are starting with a previous saved state; restore from it.
 engine.state = *(struct saved_state*)state->savedState;
 }

 /* Ipc initialization */
 status = Ipc_start();
 if (status >= 0) {
 /* application create, exec, delete */
 remoteProcId = MultiProc_getId(Main_remoteProcName);

 /* application create phase */
 status = App_create(remoteProcId);

 if (status < 0) {
 LOGI("App_create failed: status = %d\n", status);
 return;
 }

 /* application execute phase */
 status = App_exec();

 if (status < 0) {
 LOGI("App_exec failed: status = %d\n", status);
 return;
 }

 /* application delete phase */
 status = App_delete();

 if (status < 0) {
 LOGI("App_delete failed: status = %d\n", status);
 return;
 }

 /* Ipc finalization */
 Ipc_stop();

 LOGI("Application run was successful!!!!\n");

 }
 else {
 LOGI("Ipc_start failed: status = %d\n", status);
 return;
 }

 // loop waiting for stuff to do.

/* ... */ </syntaxhighlight>

Modify '<workspace_path>/NativeActivity/jni/Android.mk' as follow, by setting the AFS_PATH to the location where your Android source tree is installed:

<syntaxhighlight lang='make'> LOCAL_PATH := $(call my-dir)

1. Path to Android source tree/filesystem

AFS_PATH := /db/builds/vw/6AK.1.0/mydroid

1. Path to IPC installation directory

IPC_ROOT := $(AFS_PATH)/hardware/ti/ipc/ipc_3_22_00_03_eng

1. Path to IPC shared libraries (.so)

9/29/2020 Using IPC in an Android app - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/Using_IPC_in_an_Android_app 3/5

LIB_PATH += $(AFS_PATH)/out/target/product/jacinto6evm/system/lib

include $(CLEAR_VARS)

LOCAL_MODULE := libtiipcutils LOCAL_SRC_FILES := $(LIB_PATH)/libtiipcutils.so

include $(PREBUILT_SHARED_LIBRARY)

include $(CLEAR_VARS)

LOCAL_MODULE := libtiipc LOCAL_SRC_FILES := $(LIB_PATH)/libtiipc.so

include $(PREBUILT_SHARED_LIBRARY)

include $(CLEAR_VARS)

LOCAL_C_INCLUDES += $(IPC_ROOT)/linux/include \

 $(IPC_ROOT)/packages \
 $(IPC_ROOT)/hlos_common/include

LOCAL_MODULE := native-activity LOCAL_SRC_FILES := main.c App.c LOCAL_LDLIBS := -llog -landroid -lEGL -lGLESv1_CM -lc

LOCAL_STATIC_LIBRARIES := android_native_app_glue

LOCAL_SHARED_LIBRARIES := \

 libtiipcutils libtiipc

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/native_app_glue) </syntaxhighlight>

In a terminal window on your Ubuntu development machine, go into the '<workspace_path>/NativeActivity' directory. Run

dev host# <path to ndk>/ndk-build

This invokes the NDK to rebuild the native application, and produces a shared library 'libnative-activity.so'.

In order to produce an APK file for this application, you should have the Android project opened in Eclipse (the instructions on the NDK page should have taught you how to do so). Then

follow these steps:

Right-click on the NativeActivity project in the Package Explorer. Select Export...
Select Android->Export Android Application. Hit Next
The Project Checks screen should say no errors found. Hit Next
Either create a new keystore or use an existing keystore if you already have one. Hit Next
Either create a new key or use an existing key if you already have one. Hit Next
The path to the generated APK file will be shown. Hit Finish

Now you have generated an APK file for your application.

After you have generated the APK file, the next step is to install it to the target. Boot up your board with Android if you haven't already done so. On your development host machine,

install your APK file:

dev host# adb install -r NativeActivity.apk

Start the adb shell as root:

dev host# adb root
dev host# adb remount
dev host# adb shell

In the shell, launch the IPC LAD process

adb shell# /system/bin/lad_dra7xx -l lad.txt

Modify the permissions on the command pipe created by LAD to make it accessible by all users:

adb shell# cd /data
adb shell# chmod 777 lad
adb shell# chmod 777 lad/LAD
adb shell# chmod 777 lad/LAD/LADCMDS

Launch the app:

adb shell# am start -a android.intent.action.MAIN -n com.example.native_activity/android.app.NativeActivity

Install the app and run it

9/29/2020 Using IPC in an Android app - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/Using_IPC_in_an_Android_app 4/5

If you have Eclipse open, you should be able to see a success message in the LogCat window:

You can also verify that the slave has received all messages and replied to them by looking at the remote log:

adb shell# cat /d/remoteproc/remoteproc1/trace0

The expected output on the remote processor should be similar to this:

[0][14154.495] [t=0x00000010:a2a61aa9] Server: --> Server_exec:
[0][15325.319] [t=0x00000012:02c946d7] Server: Server_exec: processed cmd=0x0
[0][15325.319] [t=0x00000012:02cacc5f] Server: Server_exec: processed cmd=0x0
[0][15325.320] [t=0x00000012:02cc96df] Server: Server_exec: processed cmd=0x0
[0][15325.320] [t=0x00000012:02ce6e07] Server: Server_exec: processed cmd=0x0
[0][15325.320] [t=0x00000012:02d01ec7] Server: Server_exec: processed cmd=0x0
[0][15325.320] [t=0x00000012:02d1d3bf] Server: Server_exec: processed cmd=0x0
[0][15325.321] [t=0x00000012:02d3a1e5] Server: Server_exec: processed cmd=0x0
[0][15325.321] [t=0x00000012:02d5625f] Server: Server_exec: processed cmd=0x0
[0][15325.321] [t=0x00000012:02d72495] Server: Server_exec: processed cmd=0x0
[0][15325.322] [t=0x00000012:02d8f813] Server: Server_exec: processed cmd=0x0
[0][15325.322] [t=0x00000012:02daba7f] Server: Server_exec: processed cmd=0x0
[0][15325.322] [t=0x00000012:02dc7fef] Server: Server_exec: processed cmd=0x0
[0][15325.323] [t=0x00000012:02de54a1] Server: Server_exec: processed cmd=0x0
[0][15325.323] [t=0x00000012:02e01bd1] Server: Server_exec: processed cmd=0x0
[0][15325.323] [t=0x00000012:02e164c3] Server: Server_exec: processed cmd=0x2000000
[0][15325.323] [t=0x00000012:02e2b5b9] Server: <-- Server_exec: 0
[0][15325.324] [t=0x00000012:02e3a5b9] Server: --> Server_delete:
[0][15325.324] [t=0x00000012:02e55c91] Server: <-- Server_delete: 0
[0][15325.324] [t=0x00000012:02e7f80b] Server: Server_create: Slave is ready
[0][15325.325] [t=0x00000012:02e92591] Server: <-- Server_create: 0
[0][15325.325] [t=0x00000012:02ea30f7] Server: --> Server_exec:

For reference purposes, the project files are available here: File:NativeActivity.tar.gz.

{{

1. switchcategory:MultiCore=

For technical support on
MultiCore devices, please
post your questions in the
C6000 MultiCore Forum
For questions related to
the BIOS MultiCore SDK
(MCSDK), please use the
BIOS Forum

Please post only comments related
to the article Using IPC in an
Android app here.

Keystone=

For technical
support on
MultiCore devices,
please post your
questions in the
C6000 MultiCore
Forum
For questions
related to the
BIOS MultiCore
SDK (MCSDK),
please use the
BIOS Forum

Please post only
comments related to the
article Using IPC in an
Android app here.

C2000=For
technical
support on
the C2000
please
post your
questions
on The
C2000
Forum.
Please
post only
comments
about the
article
Using IPC
in an
Android
app here.

DaVinci=For
technical
support on
DaVincoplease
post your
questions on
The DaVinci
Forum. Please
post only
comments
about the
article Using
IPC in an
Android app
here.

MSP430=For
technical
support on
MSP430
please post
your
questions on
The MSP430
Forum.
Please post
only
comments
about the
article Using
IPC in an
Android app
here.

OMAP35x=For
technical
support on
OMAP please
post your
questions on
The OMAP
Forum. Please
post only
comments
about the
article Using
IPC in an
Android app
here.

OMAPL1=For
technical
support on
OMAP please
post your
questions on
The OMAP
Forum.
Please post
only
comments
about the
article Using
IPC in an
Android app
here.

MAVRK=For
technical
support on
MAVRK
please post
your
questions
on The
MAVRK
Toolbox
Forum.
Please post
only
comments
about the
article
Using IPC
in an
Android
app here.

For technical su
please post you
questions at
http://e2e.ti.com
Please post on
comments abou
article Using IP
an Android ap
}}

Links
Amplifiers & Linear
Audio
Broadband RF/IF & Digital Radio
Clocks & Timers
Data Converters

DLP & MEMS
High-Reliability
Interface
Logic
Power Management

Processors

ARM Processors
Digital Signal Processors (DSP)
Microcontrollers (MCU)
OMAP Applications Processors

Switches & Multiplexers
Temperature Sensors & Control ICs
Wireless Connectivity

Reference code

https://processors.wiki.ti.com/index.php/File:Ipc_android_app_logcat.png
https://processors.wiki.ti.com/index.php/File:NativeActivity.tar.gz
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/microcontrollers/tms320c2000_32-bit_real-time_mcus/f/171.aspx
http://e2e.ti.com/support/dsp/davinci_digital_media_processors/default.aspx
http://e2e.ti.com/support/microcontrollers/msp43016-bit_ultra-low_power_mcus/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/development_tools/mavrk/default.aspx
http://e2e.ti.com/
https://processors.wiki.ti.com/index.php/File:Hyperlink_blue.png
http://www.ti.com/lsds/ti/analog/amplifier_and_linear.page
http://www.ti.com/lsds/ti/analog/audio/audio_overview.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/clocksandtimers/clocks_and_timers.page
http://www.ti.com/lsds/ti/analog/dataconverters/data_converter.page
http://www.ti.com/lsds/ti/analog/mems/mems.page
http://www.ti.com/lsds/ti/analog/high_reliability.page
http://www.ti.com/lsds/ti/analog/interface/interface.page
http://www.ti.com/lsds/ti/logic/home_overview.page
http://www.ti.com/lsds/ti/analog/powermanagement/power_portal.page
http://www.ti.com/lsds/ti/dsp/embedded_processor.page
http://www.ti.com/lsds/ti/dsp/arm.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/microcontroller/home.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://www.ti.com/lsds/ti/analog/switches_and_multiplexers.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page
http://focus.ti.com/wireless/docs/wirelessoverview.tsp?familyId=2003§ionId=646&tabId=2735

9/29/2020 Using IPC in an Android app - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/Using_IPC_in_an_Android_app 5/5

Retrieved from "https://processors.wiki.ti.com/index.php?title=Using_IPC_in_an_Android_app&oldid=188336"

This page was last edited on 15 December 2014, at 00:44.

Content is available under Creative Commons Attribution-ShareAlike unless otherwise noted.

https://processors.wiki.ti.com/index.php?title=Using_IPC_in_an_Android_app&oldid=188336
http://creativecommons.org/licenses/by-sa/3.0/

